期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于Dyna-Q学习的旋翼无人机视觉伺服智能控制方法
被引量:
8
1
作者
史豪斌
徐梦
+1 位作者
刘珈妤
李继超
《控制与决策》
EI
CSCD
北大核心
2019年第12期2517-2526,共10页
基于图像的视觉伺服机器人控制方法通过机器人的视觉获取图像信息,然后形成基于图像信息的闭环反馈来控制机器人的合理运动.经典视觉伺服的伺服增益的选取在大多数条件下是人工赋值的,故存在鲁棒性差、收敛速度慢等问题.针对该问题,提...
基于图像的视觉伺服机器人控制方法通过机器人的视觉获取图像信息,然后形成基于图像信息的闭环反馈来控制机器人的合理运动.经典视觉伺服的伺服增益的选取在大多数条件下是人工赋值的,故存在鲁棒性差、收敛速度慢等问题.针对该问题,提出一种基于Dyna-Q的旋翼无人机视觉伺服智能控制方法调节伺服增益以提高其自适应性.首先,使用基于费尔曼链码的图像特征提取算法提取目标特征点;然后,使用基于图像的视觉伺服形成特征误差的闭环控制;其次,针对旋翼无人机强耦合欠驱动的动力学特性提出一种解耦的视觉伺服控制模型;最后,建立使用Dyna-Q学习调节伺服增益的强化学习模型,通过训练可以使得旋翼无人机自主选择伺服增益.Dyna-Q学习在经典的Q学习的基础上通过建立环境模型来存储经验,环境模型产生的虚拟样本可以作为学习样本来进行值函数的迭代.实验结果表明,所提出的方法相比于传统控制方法PID控制以及经典的基于图像视觉伺服方法具有收敛速度快、稳定性高的优势.
展开更多
关键词
视觉伺服
Dyna-Q学习
增益调节
旋翼无人机
费尔曼连码
强化学习
原文传递
题名
一种基于Dyna-Q学习的旋翼无人机视觉伺服智能控制方法
被引量:
8
1
作者
史豪斌
徐梦
刘珈妤
李继超
机构
西北工业大学计算机学院
出处
《控制与决策》
EI
CSCD
北大核心
2019年第12期2517-2526,共10页
基金
航空科学基金项目(2016ZC53022)
国家重点研发计划项目(SQ2017YFGX060091)
西北工业大学研究生种子基金项目(ZZ2018169)
文摘
基于图像的视觉伺服机器人控制方法通过机器人的视觉获取图像信息,然后形成基于图像信息的闭环反馈来控制机器人的合理运动.经典视觉伺服的伺服增益的选取在大多数条件下是人工赋值的,故存在鲁棒性差、收敛速度慢等问题.针对该问题,提出一种基于Dyna-Q的旋翼无人机视觉伺服智能控制方法调节伺服增益以提高其自适应性.首先,使用基于费尔曼链码的图像特征提取算法提取目标特征点;然后,使用基于图像的视觉伺服形成特征误差的闭环控制;其次,针对旋翼无人机强耦合欠驱动的动力学特性提出一种解耦的视觉伺服控制模型;最后,建立使用Dyna-Q学习调节伺服增益的强化学习模型,通过训练可以使得旋翼无人机自主选择伺服增益.Dyna-Q学习在经典的Q学习的基础上通过建立环境模型来存储经验,环境模型产生的虚拟样本可以作为学习样本来进行值函数的迭代.实验结果表明,所提出的方法相比于传统控制方法PID控制以及经典的基于图像视觉伺服方法具有收敛速度快、稳定性高的优势.
关键词
视觉伺服
Dyna-Q学习
增益调节
旋翼无人机
费尔曼连码
强化学习
Keywords
visual servo
Dyna-Q learning
gain adjustment
rotor UAV
felman chain code
reinforcement learning
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
原文传递
题名
作者
出处
发文年
被引量
操作
1
一种基于Dyna-Q学习的旋翼无人机视觉伺服智能控制方法
史豪斌
徐梦
刘珈妤
李继超
《控制与决策》
EI
CSCD
北大核心
2019
8
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部