The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches...The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.展开更多
In this paper, for the unbalanced Feistel network which employs diffusion matrices in a switching way, we study the fixed number of its differential active S-boxes. Firstly we obtain some lower bounds of the different...In this paper, for the unbalanced Feistel network which employs diffusion matrices in a switching way, we study the fixed number of its differential active S-boxes. Firstly we obtain some lower bounds of the differential active S-boxes for m, 2m and 3m rounds of Feistel structure, respectively. By concatenating these rounds, a fixed number of differential active S-boxes for arbitrary round number is derived. Our results imply that the unbalanced Feistel network using DSM is more secure than the traditional structure.展开更多
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (...In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.展开更多
With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propo...With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.展开更多
文摘The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.
基金Supported by the National Natural Science Foundation of China(11204379)Innovation Scientists and Technicians Troop Construction Projects of Henan Province(104100510025)
文摘In this paper, for the unbalanced Feistel network which employs diffusion matrices in a switching way, we study the fixed number of its differential active S-boxes. Firstly we obtain some lower bounds of the differential active S-boxes for m, 2m and 3m rounds of Feistel structure, respectively. By concatenating these rounds, a fixed number of differential active S-boxes for arbitrary round number is derived. Our results imply that the unbalanced Feistel network using DSM is more secure than the traditional structure.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)+2 种基金the Program for Excellent Talents in Universities of Liaoning Province, China (Grant No. LR2012003)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06)
文摘In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.
基金Project supported by the Shandong Province Natural Science Foundation(Grant Nos.ZR2023MF089,R2023QF036,and ZR2021MF073)the Industry-University-Research Collaborative Innovation Fund Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant Nos.2021CXY-13 and 2021CXY-14)+2 种基金the Major Scientific and Technological Innovation Projects of Shandong Province(Grant No.2020CXGC010901)the Talent Research Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023RCKY054)the Basic Research Projects of Science,Education and Industry Integration Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023PX081)。
文摘With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.