The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct ...The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct position measurement using a linear'scale is employed. The dynamic characteristics and non- collocated situation have long been the source of difficulties in motion and vibration control, and deterio- rate the achieved accuracy of the axis motion. In this study, a dynamic model using a frequency-based sub- structure approach is established, considering the flexibilities and their variation. The position-dependent variation of the dynamic characteristics is then fully investigated. A corresponding control strategy, which is composed of a modal characteristic modifier (MCM) and an intelligent adaptive tuning algorithm (ATA), is then developed. The MCM utilizes a combination of peak filters and notch filters, thereby shaping the plant dynamics into a virtual collocated system and avoiding control spillover. An ATA using an artificial neural network (ANN) as a smooth parameter interpolator updates the parameters of the filters in real time in order to cope with the feed drive's dynamic variation. Numerical verification of the effectiveness and robustness of the orooosed strategy is shown for a real feed drive.展开更多
Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter ...Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool.展开更多
In many cases, the cutting method is usually adopted for the efficient machining of non-circular body of revolution and a feed drive is needed to actuate the cutting tool to and fro according to input signal wave. The...In many cases, the cutting method is usually adopted for the efficient machining of non-circular body of revolution and a feed drive is needed to actuate the cutting tool to and fro according to input signal wave. The feed drive for the purpose is required of fast response and accurate positioning. Both of these are highly dependent upon the actuating elements. Several schemes of actuation are specially interested. One is the introduction of piezoelectric actuation. However, the tiny working stroke of the piezoelectric material limits its application to a narrow range. Another is the application of electro-magnetic actuator. An innovative feed drive actuated by the stepper motor is introduced for the purpose. For a conventional step operating mode, a stepper motor can only be controlled to position at finite discrete points. Thus, when it is applied as an actuator of the feed drive, it is very difficult to maintain high accuracy and fast response. To eliminate quantitative error, the stepper motor is controlled under the continual mode. It is achieved with a micro-controller system and a built-in control algorithm program, called "tracking algorithm". Within each sampling cycle, the micro-controller will sample the input signal and the time interval will be divided into two parts according to the relative position between two adjacent stepping points. The phase coils correspondent to the two adjacent stepping points are energized respectively with calculated time duration. In the way, the motion of the tool frame smoothly tracks the input signal. This paper presents modeling and identification of frequency response of the proposed drive. The dynamic response of the feed drive is manly decided by the natural frequency of the stepper motor. For the conventional small-size stepper motors, the natural frequency is within the range 200~400 Hz. Experimental results show that the stepper motor actuated tool frame can smoothly keep in track of the input signal wave under "tracking control". The bandwidth of frequency of the feed drive exceeds 310 Hz.展开更多
The characteristics of several different linear motors have been investigated, and the feed drive system with linear motor instead of screw-nut mechanism has been built for a submicro ultraprecision turning machine. I...The characteristics of several different linear motors have been investigated, and the feed drive system with linear motor instead of screw-nut mechanism has been built for a submicro ultraprecision turning machine. In the control system for the feed drive system arranged as "T", both P-position and PI-speed control loops are used. The feedback variable is obtained from a double frequecy laser interferometor. Experiments show that the feed drive with linear motor is simple in construction, and that its dynamics is better than others. So the machining accuracy of the workpiece machined has been successfully improved.展开更多
In this study, in order to investigate the power consumption of feed drive system, mathematical models for the single-axis experimental apparatus are developed. This apparatus can be driven by either of ball screw or ...In this study, in order to investigate the power consumption of feed drive system, mathematical models for the single-axis experimental apparatus are developed. This apparatus can be driven by either of ball screw or linear motor and it is possible to change the mechanical properties of such as grease viscosity of the table. Then, the power consumption is simulated by proposed method based on the mathematical model of feed drive systems and the simulated results are compared with the measured results of the experimental apparatus to confirm the validity of the proposed method. In addition, it is clarified that the energy usages of the feed drive system. The energy losses of the feed drive system are divided into the loss of each part and these energy losses are calculated by the proposed method. Then, it is investigated that the influence of the velocity and friction to the energy consumption of feed drive system. As the results, it is confirmed that proposed method can accurately predict the power consumption of the ball-screw feed drive system. It is also clarified that the energy usage for both of ball-screw and linear motor drive systems.展开更多
This paper proposes a quadrant glitch compensation method to achieve nanometer-level accuracy of contouring control for a feed drive system using linear ball guides.The proposed method is a combination of a modified d...This paper proposes a quadrant glitch compensation method to achieve nanometer-level accuracy of contouring control for a feed drive system using linear ball guides.The proposed method is a combination of a modified disturbance observer(“disturbance suppressor”)and an improved repetitive control scheme.Sinusoidal motion tests with 1 mm amplitude and 0.1 Hz driving frequency were conducted using a single-axis feed drive system to verify the quadrant glitch compensation ability of this method.First,the repeatability of the quadrant glitches in the experimental system was verified,which is the most important characteristic required for compensation via repetitive control.Then,by applying the combination of disturbance suppressor and conventional repetitive control,the amplitudes of the quadrant glitches were decreased to less than 1 nm;in other words,the ratio of the magnitude of the quadrant glitch to the amplitude of the position reference was less than 1/1,000,000.However,for both compensation schemes mentioned before,vibrations were generated when the feed speed increased.Moreover,the amplitudes increased with the number of repetitions.The reason for the vibrations was identified as the repetitive control mechanism.To suppress these vibrations,the repetitive control was applied only to narrowed regimes near the quadrant glitches.Thus,the maximum contouring error was decreased to 2 nm.In addition,the nonlinear spring behavior of the linear ball guides was confirmed to affect the stability of the control systems.展开更多
The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the cu...The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 ~C and 2.5 pm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.展开更多
基金This work was supported by the key project of the National Natural Science Foundation of China (51235009).
文摘The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct position measurement using a linear'scale is employed. The dynamic characteristics and non- collocated situation have long been the source of difficulties in motion and vibration control, and deterio- rate the achieved accuracy of the axis motion. In this study, a dynamic model using a frequency-based sub- structure approach is established, considering the flexibilities and their variation. The position-dependent variation of the dynamic characteristics is then fully investigated. A corresponding control strategy, which is composed of a modal characteristic modifier (MCM) and an intelligent adaptive tuning algorithm (ATA), is then developed. The MCM utilizes a combination of peak filters and notch filters, thereby shaping the plant dynamics into a virtual collocated system and avoiding control spillover. An ATA using an artificial neural network (ANN) as a smooth parameter interpolator updates the parameters of the filters in real time in order to cope with the feed drive's dynamic variation. Numerical verification of the effectiveness and robustness of the orooosed strategy is shown for a real feed drive.
基金This paper is supported by the Major State Basic Research Development Program of China under Grant No2005CB724101the Key Items Program of International Science and Technology Cooperation of China under Grant No2003DF000021
文摘Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool.
文摘In many cases, the cutting method is usually adopted for the efficient machining of non-circular body of revolution and a feed drive is needed to actuate the cutting tool to and fro according to input signal wave. The feed drive for the purpose is required of fast response and accurate positioning. Both of these are highly dependent upon the actuating elements. Several schemes of actuation are specially interested. One is the introduction of piezoelectric actuation. However, the tiny working stroke of the piezoelectric material limits its application to a narrow range. Another is the application of electro-magnetic actuator. An innovative feed drive actuated by the stepper motor is introduced for the purpose. For a conventional step operating mode, a stepper motor can only be controlled to position at finite discrete points. Thus, when it is applied as an actuator of the feed drive, it is very difficult to maintain high accuracy and fast response. To eliminate quantitative error, the stepper motor is controlled under the continual mode. It is achieved with a micro-controller system and a built-in control algorithm program, called "tracking algorithm". Within each sampling cycle, the micro-controller will sample the input signal and the time interval will be divided into two parts according to the relative position between two adjacent stepping points. The phase coils correspondent to the two adjacent stepping points are energized respectively with calculated time duration. In the way, the motion of the tool frame smoothly tracks the input signal. This paper presents modeling and identification of frequency response of the proposed drive. The dynamic response of the feed drive is manly decided by the natural frequency of the stepper motor. For the conventional small-size stepper motors, the natural frequency is within the range 200~400 Hz. Experimental results show that the stepper motor actuated tool frame can smoothly keep in track of the input signal wave under "tracking control". The bandwidth of frequency of the feed drive exceeds 310 Hz.
文摘The characteristics of several different linear motors have been investigated, and the feed drive system with linear motor instead of screw-nut mechanism has been built for a submicro ultraprecision turning machine. In the control system for the feed drive system arranged as "T", both P-position and PI-speed control loops are used. The feedback variable is obtained from a double frequecy laser interferometor. Experiments show that the feed drive with linear motor is simple in construction, and that its dynamics is better than others. So the machining accuracy of the workpiece machined has been successfully improved.
文摘In this study, in order to investigate the power consumption of feed drive system, mathematical models for the single-axis experimental apparatus are developed. This apparatus can be driven by either of ball screw or linear motor and it is possible to change the mechanical properties of such as grease viscosity of the table. Then, the power consumption is simulated by proposed method based on the mathematical model of feed drive systems and the simulated results are compared with the measured results of the experimental apparatus to confirm the validity of the proposed method. In addition, it is clarified that the energy usages of the feed drive system. The energy losses of the feed drive system are divided into the loss of each part and these energy losses are calculated by the proposed method. Then, it is investigated that the influence of the velocity and friction to the energy consumption of feed drive system. As the results, it is confirmed that proposed method can accurately predict the power consumption of the ball-screw feed drive system. It is also clarified that the energy usage for both of ball-screw and linear motor drive systems.
文摘This paper proposes a quadrant glitch compensation method to achieve nanometer-level accuracy of contouring control for a feed drive system using linear ball guides.The proposed method is a combination of a modified disturbance observer(“disturbance suppressor”)and an improved repetitive control scheme.Sinusoidal motion tests with 1 mm amplitude and 0.1 Hz driving frequency were conducted using a single-axis feed drive system to verify the quadrant glitch compensation ability of this method.First,the repeatability of the quadrant glitches in the experimental system was verified,which is the most important characteristic required for compensation via repetitive control.Then,by applying the combination of disturbance suppressor and conventional repetitive control,the amplitudes of the quadrant glitches were decreased to less than 1 nm;in other words,the ratio of the magnitude of the quadrant glitch to the amplitude of the position reference was less than 1/1,000,000.However,for both compensation schemes mentioned before,vibrations were generated when the feed speed increased.Moreover,the amplitudes increased with the number of repetitions.The reason for the vibrations was identified as the repetitive control mechanism.To suppress these vibrations,the repetitive control was applied only to narrowed regimes near the quadrant glitches.Thus,the maximum contouring error was decreased to 2 nm.In addition,the nonlinear spring behavior of the linear ball guides was confirmed to affect the stability of the control systems.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA040701)
文摘The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 ~C and 2.5 pm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.