期刊文献+
共找到647篇文章
< 1 2 33 >
每页显示 20 50 100
DB-FL: DAG blockchain-enabled generalized federated dropout learning
1
作者 Sa Xiao Xiaoge Huang +2 位作者 Xuesong Deng Bin Cao Qianbin Chen 《Digital Communications and Networks》 2025年第3期886-897,共12页
To protect user privacy and data security,the integration of Federated Learning(FL)and blockchain has become an emerging research hotspot.However,the limited throughput and high communication complexity of traditional... To protect user privacy and data security,the integration of Federated Learning(FL)and blockchain has become an emerging research hotspot.However,the limited throughput and high communication complexity of traditional blockchains limit their application in large-scale FL tasks,and the synchronous traditional FL will also reduce the training efficiency.To address these issues,in this paper,we propose a Directed Acyclic Graph(DAG)blockchain-enabled generalized Federated Dropout(FD)learning strategy,which could improve the efficiency of FL while ensuring the model generalization.Specifically,the DAG maintained by multiple edge servers will guarantee the security and traceability of the data,and the Reputation-based Tips Selection Algorithm(RTSA)is proposed to reduce the blockchain consensus delay.Second,the semi-asynchronous training among Intelligent Devices(IDs)is adopted to improve the training efficiency,and a reputation-based FD technology is proposed to prevent overfitting of the model.In addition,a Hybrid Optimal Resource Allocation(HORA)algorithm is introduced to minimize the network delay.Finally,simulation results demonstrate the effectiveness and superiority of the proposed algorithms. 展开更多
关键词 federated learning Blockchain Directed acyclic graph federated dropout Resource allocation
在线阅读 下载PDF
Decentralized Federated Graph Learning via Surrogate Model
2
作者 Bolin Zhang Ruichun Gu Haiying Liu 《Computers, Materials & Continua》 2025年第2期2521-2535,共15页
Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguardi... Federated Graph Learning (FGL) enables model training without requiring each client to share local graph data, effectively breaking data silos by aggregating the training parameters from each terminal while safeguarding data privacy. Traditional FGL relies on a centralized server for model aggregation;however, this central server presents challenges such as a single point of failure and high communication overhead. Additionally, efficiently training a robust personalized local model for each client remains a significant objective in federated graph learning. To address these issues, we propose a decentralized Federated Graph Learning framework with efficient communication, termed Decentralized Federated Graph Learning via Surrogate Model (SD_FGL). In SD_FGL, each client is required to maintain two models: a private model and a surrogate model. The surrogate model is publicly shared and can exchange and update information directly with any client, eliminating the need for a central server and reducing communication overhead. The private model is independently trained by each client, allowing it to calculate similarity with other clients based on local data as well as information shared through the surrogate model. This enables the private model to better adjust its training strategy and selectively update its parameters. Additionally, local differential privacy is incorporated into the surrogate model training process to enhance privacy protection. Testing on three real-world graph datasets demonstrates that the proposed framework improves accuracy while achieving decentralized Federated Graph Learning with lower communication overhead and stronger privacy safeguards. 展开更多
关键词 federated learning federated graph learning DECENTRALIZED graph neural network privacy preservation
在线阅读 下载PDF
A Comprehensive Survey on Federated Learning Applications in Computational Mental Healthcare 被引量:1
3
作者 Vajratiya Vajrobol Geetika Jain Saxena +6 位作者 Amit Pundir Sanjeev Singh Akshat Gaurav Savi Bansal Razaz Waheeb Attar Mosiur Rahman Brij B.Gupta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期49-90,共42页
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num... Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact. 展开更多
关键词 DEPRESSION emotional recognition intelligent healthcare systems mental health federated learning stress detection sleep behaviour
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
4
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
5
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 Vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
Beyond the Cloud: Federated Learning and Edge AI for the Next Decade 被引量:1
6
作者 Sooraj George Thomas Praveen Kumar Myakala 《Journal of Computer and Communications》 2025年第2期37-50,共14页
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by... As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems. 展开更多
关键词 federated Learning Edge AI Decentralized Computing Privacy-Preserving AI Blockchain Quantum AI
在线阅读 下载PDF
FedCPS:A Dual Optimization Model for Federated Learning Based on Clustering and Personalization Strategy 被引量:1
7
作者 Zhen Yang Yifan Liu +2 位作者 Fan Feng Yi Liu Zhenpeng Liu 《Computers, Materials & Continua》 2025年第4期357-380,共24页
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a... Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments. 展开更多
关键词 federated learning CLUSTER PERSONALIZATION OVERFITTING
在线阅读 下载PDF
A hierarchical blockchain-enabled distributed federated learning system with model contribution based rewarding 被引量:1
8
作者 Haibo Wang Hongwei Gao +2 位作者 Teng Ma Chong Li Tao Jing 《Digital Communications and Networks》 2025年第1期35-42,共8页
Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privac... Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security. 展开更多
关键词 Blockchain federated learning Consensus scheme Accuracy dependent throughput management
在线阅读 下载PDF
Federated Learning’s Role in Next-Gen TV Ad Optimization
9
作者 Gabriela Dobrita Simona-Vasilica Oprea Adela Bâra 《Computers, Materials & Continua》 SCIE EI 2025年第1期675-712,共38页
In the rapidly evolving landscape of television advertising,optimizing ad schedules to maximize viewer engagement and revenue has become significant.Traditional methods often operate in silos,limiting the potential in... In the rapidly evolving landscape of television advertising,optimizing ad schedules to maximize viewer engagement and revenue has become significant.Traditional methods often operate in silos,limiting the potential insights gained from broader data analysis due to concerns over privacy and data sharing.This article introduces a novel approach that leverages Federated Learning(FL)to enhance TV ad schedule optimization,combining the strengths of local optimization techniques with the power of global Machine Learning(ML)models to uncover actionable insights without compromising data privacy.It combines linear programming for initial ads scheduling optimization with ML—specifically,a K-Nearest Neighbors(KNN)model—for predicting ad spot positions.Taking into account the diversity and the difficulty of the ad-scheduling problem,we propose a prescriptivepredictive approach in which first the position of the ads is optimized(using Google’s OR-Tools CP-SAT)and then the scheduled position of all ads will be the result of the optimization problem.Second,this output becomes the target of a predictive task that predicts the position of new entries based on their characteristics ensuring the implementation of the scheduling at large scale(using KNN,Light Gradient Boosting Machine and Random Forest).Furthermore,we explore the integration of FL to enhance predictive accuracy and strategic insight across different broadcasting networks while preserving data privacy.The FL approach resulted in 8750 ads being precisely matched to their optimal category placements,showcasing an alignment with the intended diversity objectives.Additionally,there was a minimal deviation observed,with 1133 ads positioned within a one-category variance from their ideal placement in the original dataset. 展开更多
关键词 Ad scheduling prescriptive-predictive approach federated learning KNN
在线阅读 下载PDF
FedCognis:An Adaptive Federated Learning Framework for Secure Anomaly Detection in Industrial IoT-Enabled Cognitive Cities
10
作者 Abdulatif Alabdulatif 《Computers, Materials & Continua》 2025年第10期1185-1220,共36页
FedCognis is a secure and scalable federated learning framework designed for continuous anomaly detection in Industrial Internet of Things-enabled Cognitive Cities(IIoTCC).It introduces two key innovations:a Quantum S... FedCognis is a secure and scalable federated learning framework designed for continuous anomaly detection in Industrial Internet of Things-enabled Cognitive Cities(IIoTCC).It introduces two key innovations:a Quantum Secure Authentication(QSA)mechanism for adversarial defense and integrity validation,and a Self-Attention Long Short-Term Memory(SALSTM)model for high-accuracy spatiotemporal anomaly detection.Addressing core challenges in traditional Federated Learning(FL)—such as model poisoning,communication overhead,and concept drift—FedCognis integrates dynamic trust-based aggregation and lightweight cryptographic verification to ensure secure,real-time operation across heterogeneous IIoT domains including utilities,public safety,and traffic systems.Evaluated on the WUSTL-IIoTCC-2021 dataset,FedCognis achieves 94.5%accuracy,0.941 AUC for precision-recall,and 0.896 ROC-AUC,while reducing bandwidth consumption by 72%.The framework demonstrates sublinear computational complexity and a resilience score of 96.56%across six security dimensions.These results confirm FedCognis as a robust and adaptive anomaly detection solution suitable for deployment in large-scale cognitive urban infrastructures. 展开更多
关键词 Cognitive cities federated learning industrial IoT anomaly detection trust management smart infrastructure security
在线阅读 下载PDF
Secure Malicious Node Detection in Decentralized Healthcare Networks Using Cloud and Edge Computing with Blockchain-Enabled Federated Learning
11
作者 Raj Sonani Reham Alhejaili +2 位作者 Pushpalika Chatterjee Khalid Hamad Alnafisah Jehad Ali 《Computer Modeling in Engineering & Sciences》 2025年第9期3169-3189,共21页
Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes... Healthcare networks are transitioning from manual records to electronic health records,but this shift introduces vulnerabilities such as secure communication issues,privacy concerns,and the presence of malicious nodes.Existing machine and deep learning-based anomalies detection methods often rely on centralized training,leading to reduced accuracy and potential privacy breaches.Therefore,this study proposes a Blockchain-based-Federated Learning architecture for Malicious Node Detection(BFL-MND)model.It trains models locally within healthcare clusters,sharing only model updates instead of patient data,preserving privacy and improving accuracy.Cloud and edge computing enhance the model’s scalability,while blockchain ensures secure,tamper-proof access to health data.Using the PhysioNet dataset,the proposed model achieves an accuracy of 0.95,F1 score of 0.93,precision of 0.94,and recall of 0.96,outperforming baseline models like random forest(0.88),adaptive boosting(0.90),logistic regression(0.86),perceptron(0.83),and deep neural networks(0.92). 展开更多
关键词 Authentication blockchain deep learning federated learning healthcare network machine learning wearable sensor nodes
在线阅读 下载PDF
FedEPC:An Efficient and Privacy-Enhancing Clustering Federated Learning Method for Sensing-Computing Fusion Scenarios
12
作者 Ning Tang Wang Luo +6 位作者 Yiwei Wang Bao Feng Shuang Yang Jiangtao Xu Daohua Zhu Zhechen Huang Wei Liang 《Computers, Materials & Continua》 2025年第11期4091-4113,共23页
With the deep integration of edge computing,5G and Artificial Intelligence ofThings(AIoT)technologies,the large-scale deployment of intelligent terminal devices has given rise to data silos and privacy security challe... With the deep integration of edge computing,5G and Artificial Intelligence ofThings(AIoT)technologies,the large-scale deployment of intelligent terminal devices has given rise to data silos and privacy security challenges in sensing-computing fusion scenarios.Traditional federated learning(FL)algorithms face significant limitations in practical applications due to client drift,model bias,and resource constraints under non-independent and identically distributed(Non-IID)data,as well as the computational overhead and utility loss caused by privacy-preserving techniques.To address these issues,this paper proposes an Efficient and Privacy-enhancing Clustering Federated Learning method(FedEPC).This method introduces a dual-round client selection mechanism to optimize training.First,the Sparsity-based Privacy-preserving Representation Extraction Module(SPRE)and Adaptive Isomorphic Devices Clustering Module(AIDC)cluster clients based on privacy-sensitive features.Second,the Context-aware Incluster Client Selection Module(CICS)dynamically selects representative devices for training,ensuring heterogeneous data distributions are fully represented.By conducting federated training within clusters and aggregating personalized models,FedEPC effectively mitigates weight divergence caused by data heterogeneity,reduces the impact of client drift and straggler issues.Experimental results demonstrate that FedEPC significantly improves test accuracy in highly Non-IID data scenarios compared to FedAvg and existing clustering FL methods.By ensuring privacy security,FedEPC provides an efficient and robust solution for FL in resource-constrained devices within sensing-computing fusion scenarios,offering both theoretical value and engineering practicality. 展开更多
关键词 federated learning edge computing CLUSTERING NON-IID PRIVACY
在线阅读 下载PDF
Blockchain and signcryption enabled asynchronous federated learning framework in fog computing
13
作者 Zhou Zhou Youliang Tian +3 位作者 Jinbo Xiong Changgen Peng Jing Li Nan Yang 《Digital Communications and Networks》 2025年第2期442-454,共13页
Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centraliz... Federated learning combines with fog computing to transform data sharing into model sharing,which solves the issues of data isolation and privacy disclosure in fog computing.However,existing studies focus on centralized single-layer aggregation federated learning architecture,which lack the consideration of cross-domain and asynchronous robustness of federated learning,and rarely integrate verification mechanisms from the perspective of incentives.To address the above challenges,we propose a Blockchain and Signcryption enabled Asynchronous Federated Learning(BSAFL)framework based on dual aggregation for cross-domain scenarios.In particular,we first design two types of signcryption schemes to secure the interaction and access control of collaborative learning between domains.Second,we construct a differential privacy approach that adaptively adjusts privacy budgets to ensure data privacy and local models'availability of intra-domain user.Furthermore,we propose an asynchronous aggregation solution that incorporates consensus verification and elastic participation using blockchain.Finally,security analysis demonstrates the security and privacy effectiveness of BSAFL,and the evaluation on real datasets further validates the high model accuracy and performance of BSAFL. 展开更多
关键词 Blockchain SIGNCRYPTION federated learning ASYNCHRONOUS Fog computing
在线阅读 下载PDF
Detection of False Data Injection Attacks:A Protected Federated Deep Learning Based on Encryption Mechanism
14
作者 Chenxin Lin Qun Zhou +3 位作者 Zhan Wang Ximing Fan Yaochang Xu Yijia Xu 《Computers, Materials & Continua》 2025年第9期5859-5877,共19页
False Data Injection Attack(FDIA),a disruptive cyber threat,is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems,leading to system unr... False Data Injection Attack(FDIA),a disruptive cyber threat,is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems,leading to system unreliability,data integrity loss and operational vulnerability exposure.Given its widespread harm and impact,conducting in-depth research on FDIA detection is vitally important.This paper innovatively introduces a FDIA detection scheme:A Protected Federated Deep Learning(ProFed),which leverages Federated Averaging algorithm(FedAvg)as a foundational framework to fortify data security,harnesses pre-trained enhanced spatial-temporal graph neural networks(STGNN)to perform localized model training and integrates the Cheon-Kim-Kim-Song(CKKS)homomorphic encryption system to secure sensitive information.Simulation tests on IEEE 14-bus and IEEE 118-bus systems demonstrate that our proposed method outperforms other state-of-the-art detection methods across all evaluation metrics,with peak improvements reaching up to 35%. 展开更多
关键词 Smart grid FDIA federated learning STGNN CKKS homomorphic encryption
在线阅读 下载PDF
Federated Learning and Blockchain Framework for Scalable and Secure IoT Access Control
15
作者 Ammar Odeh Anas Abu Taleb 《Computers, Materials & Continua》 2025年第7期447-461,共15页
The increasing deployment of Internet of Things(IoT)devices has introduced significant security chal-lenges,including identity spoofing,unauthorized access,and data integrity breaches.Traditional security mechanisms r... The increasing deployment of Internet of Things(IoT)devices has introduced significant security chal-lenges,including identity spoofing,unauthorized access,and data integrity breaches.Traditional security mechanisms rely on centralized frameworks that suffer from single points of failure,scalability issues,and inefficiencies in real-time security enforcement.To address these limitations,this study proposes the Blockchain-Enhanced Trust and Access Control for IoT Security(BETAC-IoT)model,which integrates blockchain technology,smart contracts,federated learning,and Merkle tree-based integrity verification to enhance IoT security.The proposed model eliminates reliance on centralized authentication by employing decentralized identity management,ensuring tamper-proof data storage,and automating access control through smart contracts.Experimental evaluation using a synthetic IoT dataset shows that the BETAC-IoT model improves access control enforcement accuracy by 92%,reduces device authentication time by 52%(from 2.5 to 1.2 s),and enhances threat detection efficiency by 7%(from 85%to 92%)using federated learning.Additionally,the hybrid blockchain architecture achieves a 300%increase in transaction throughput when comparing private blockchain performance(1200 TPS)to public chains(300 TPS).Access control enforcement accuracy was quantified through confusion matrix analysis,with high precision and minimal false positives observed across access decision categories.Although the model presents advantages in security and scalability,challenges such as computational overhead,blockchain storage constraints,and interoperability with existing IoT systems remain areas for future research.This study contributes to advancing decentralized security frameworks for IoT,providing a resilient and scalable solution for securing connected environments. 展开更多
关键词 Blockchain IoT security access control federated learning merkle tree decentralized identity manage-ment threat detection
在线阅读 下载PDF
FedStrag:Straggler-aware federated learning for low resource devices
16
作者 Aditya Kumar Satish Narayana Srirama 《Digital Communications and Networks》 2025年第4期1213-1223,共11页
Federated Learning(FL)has become a popular training paradigm in recent years.However,stragglers are critical bottlenecks in an Internet of Things(IoT)network while training.These nodes produce stale updates to the ser... Federated Learning(FL)has become a popular training paradigm in recent years.However,stragglers are critical bottlenecks in an Internet of Things(IoT)network while training.These nodes produce stale updates to the server,which slow down the convergence.In this paper,we studied the impact of the stale updates on the global model,which is observed to be significant.To address this,we propose a weighted averaging scheme,FedStrag,that optimizes the training with stale updates.The work is focused on training a model in an IoT network that has multiple challenges,such as resource constraints,stragglers,network issues,device heterogeneity,etc.To this end,we developed a time-bounded asynchronous FL paradigm that can train a model on the continuous iflow of data in the edge-fog-cloud continuum.To test the FedStrag approach,a model is trained with multiple stragglers scenarios on both Independent and Identically Distributed(IID)and non-IID datasets on Raspberry Pis.The experiment results suggest that the FedStrag outperforms the baseline FedAvg in all possible cases. 展开更多
关键词 Internet of things Decentralized training Fog computing federated learning Distributed computing Straggler
在线阅读 下载PDF
A Federated Learning Incentive Mechanism for Dynamic Client Participation:Unbiased Deep Learning Models
17
作者 Jianfeng Lu Tao Huang +2 位作者 Yuanai Xie Shuqin Cao Bing Li 《Computers, Materials & Continua》 2025年第4期619-634,共16页
The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client pr... The proliferation of deep learning(DL)has amplified the demand for processing large and complex datasets for tasks such as modeling,classification,and identification.However,traditional DL methods compromise client privacy by collecting sensitive data,underscoring the necessity for privacy-preserving solutions like Federated Learning(FL).FL effectively addresses escalating privacy concerns by facilitating collaborative model training without necessitating the sharing of raw data.Given that FL clients autonomously manage training data,encouraging client engagement is pivotal for successful model training.To overcome challenges like unreliable communication and budget constraints,we present ENTIRE,a contract-based dynamic participation incentive mechanism for FL.ENTIRE ensures impartial model training by tailoring participation levels and payments to accommodate diverse client preferences.Our approach involves several key steps.Initially,we examine how random client participation impacts FL convergence in non-convex scenarios,establishing the correlation between client participation levels and model performance.Subsequently,we reframe model performance optimization as an optimal contract design challenge to guide the distribution of rewards among clients with varying participation costs.By balancing budget considerations with model effectiveness,we craft optimal contracts for different budgetary constraints,prompting clients to disclose their participation preferences and select suitable contracts for contributing to model training.Finally,we conduct a comprehensive experimental evaluation of ENTIRE using three real datasets.The results demonstrate a significant 12.9%enhancement in model performance,validating its adherence to anticipated economic properties. 展开更多
关键词 federated learning deep learning non-IID data dynamic client participation non-convex optimization CONTRACT
在线阅读 下载PDF
Asynchronous Tiered Federated Learning Storage Scheme Based on Blockchain and IPFS
18
作者 Tianyu Li Dezhi Han +1 位作者 JiataoLi Kuan-Ching Li 《Computers, Materials & Continua》 2025年第6期4117-4140,共24页
As is known,centralized federated learning faces risks of a single point of failure and privacy breaches,and blockchain-based federated learning frameworks can address these challenges to a certain extent in recent wo... As is known,centralized federated learning faces risks of a single point of failure and privacy breaches,and blockchain-based federated learning frameworks can address these challenges to a certain extent in recent works.However,malicious clients may still illegally access the blockchain to upload malicious data or steal on-chain data.In addition,blockchain-based federated training suffers from a heavy storage burden and excessive network communication overhead.To address these issues,we propose an asynchronous,tiered federated learning storage scheme based on blockchain and IPFS.It manages the execution of federated learning tasks through smart contracts deployed on the blockchain,decentralizing the entire training process.Additionally,the scheme employs a secure and efficient blockchain-based asynchronous tiered architecture,integrating attribute-based access control technology for resource exchange between the clients and the blockchain network.It dynamically manages access control policies during training and adopts a hybrid data storage strategy combining blockchain and IPFS.Experiments with multiple sets of image classification tasks are conducted,indicating that the storage strategy used in this scheme saves nearly 50 percent of the communication overhead and significantly reduces the on-chain storage burden compared to the traditional blockchain-only storage strategy.In terms of training effectiveness,it maintains similar accuracy as centralized training and minimizes the probability of being attacked. 展开更多
关键词 federated learning blockchain access control secure storage strategy IPFS
在线阅读 下载PDF
EPRFL:An Efficient Privacy-Preserving and Robust Federated Learning Scheme for Fog Computing
19
作者 Ke Zhijie Xie Yong +1 位作者 Syed Hamad Shirazi Li Haifeng 《China Communications》 2025年第4期202-222,共21页
Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machin... Federated learning(FL)is a distributed machine learning paradigm that excels at preserving data privacy when using data from multiple parties.When combined with Fog Computing,FL offers enhanced capabilities for machine learning applications in the Internet of Things(IoT).However,implementing FL across large-scale distributed fog networks presents significant challenges in maintaining privacy,preventing collusion attacks,and ensuring robust data aggregation.To address these challenges,we propose an Efficient Privacy-preserving and Robust Federated Learning(EPRFL)scheme for fog computing scenarios.Specifically,we first propose an efficient secure aggregation strategy based on the improved threshold homomorphic encryption algorithm,which is not only resistant to model inference and collusion attacks,but also robust to fog node dropping.Then,we design a dynamic gradient filtering method based on cosine similarity to further reduce the communication overhead.To minimize training delays,we develop a dynamic task scheduling strategy based on comprehensive score.Theoretical analysis demonstrates that EPRFL offers robust security and low latency.Extensive experimental results indicate that EPRFL outperforms similar strategies in terms of privacy preserving,model performance,and resource efficiency. 展开更多
关键词 federated learning fog computing internet of things PRIVACY-PRESERVING ROBUSTNESS
在线阅读 下载PDF
Robust Transmission Design for Federated Learning Through Over-the-Air Computation
20
作者 Hamideh Zamanpour Abyaneh Saba Asaad Amir Masoud Rabiei 《China Communications》 2025年第3期65-75,共11页
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission sche... Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless channel.In this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is proposed.To model CSI uncertainty,an expectation-based error model is utilized.The main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model aggregation.The problem is formulated as a combinatorial optimization problem and is solved in two steps.First,the priority order of devices is determined by a sparsity-inducing procedure.Then,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are met.An alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex subproblems.Numerical results illustrate the effectiveness and robustness of the proposed scheme. 展开更多
关键词 federated learning imperfect CSI optimization over-the-air computing robust design
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部