期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Bi-SRNN的联邦学习区域电力短期负荷预测模型 被引量:7
1
作者 袁郁 杨超 +2 位作者 郑伟铭 林俊鹏 陈新 《电网与清洁能源》 CSCD 北大核心 2023年第10期45-55,共11页
随着配电网终端需求多样化和清洁能源的大规模接入,对区域电力负荷的准确预测变得至关重要。在电力市场化改革背景下,客户端倾向于用电信息保存在本地以确保隐私安全。利用天气数据和历史负荷数据,提出面向区域客户端隐私保护的联邦学... 随着配电网终端需求多样化和清洁能源的大规模接入,对区域电力负荷的准确预测变得至关重要。在电力市场化改革背景下,客户端倾向于用电信息保存在本地以确保隐私安全。利用天气数据和历史负荷数据,提出面向区域客户端隐私保护的联邦学习双向叠加循环神经网络负荷预测框架。根据短期电力负荷长序列数据之间的强关联性建立基于双向叠加循环神经网络的负荷预测模型。利用联邦平均算法构建基于联邦学习的区域负荷预测框架,将多个利用不同区域客户端负荷数据训练得到的双向叠加循环神经网络的模型进行融合,反复迭代获得全局模型。采用某市96组实时区域电力负荷公开的数据集,对该模型在区域客户端不共享负荷数据条件下的训练效果进行测试,结果表明,所构建模型具有较低的训练耗时和较高的预测精度。 展开更多
关键词 双向叠加循环神经网络 负荷预测 联邦学习 联邦平均算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部