An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designe...An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.展开更多
Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity AB...Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity ABE productions,but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system.Over the past decades,efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments.In this review,a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications.The recent trends in distillation sequence construction that fitting with the rapid developed upstream in situ product recovery(ISPR)systems are emphasized.Furthermore,towards developing a more efficient ABE distillation system,the review takes a broad overview of the intensification strategies for ABE distillation.Along with systematic introduction of the key examples,the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.展开更多
[Objective] The research aimed to search and obtain the fermentation method of hyaluronic acid with the high yield.[Method] In the production process of hyaluronic acid by the microbial fermentation method,the influen...[Objective] The research aimed to search and obtain the fermentation method of hyaluronic acid with the high yield.[Method] In the production process of hyaluronic acid by the microbial fermentation method,the influence of substrate concentration on the fermentation was explored.[Result] The glucose had the biggest influence on the hyaluronic acid fermentation.The low concentration of glucose only could synthetize a little bacteria and hyaluronic acid,and the high concentration of glucose could inhibit the growth of bacteria and the formation of hyaluronic acid.Via the exploratory experiment,the fed-batch fermentation could disarm the substrate inhibition.The concrete method was adding 2% glucose before the start of fermentation,and adding 2% glucose at the 14th hour of fermentation,and adding 2% glucose again at the 22nd hour of fermentation.[Conclusion] In the microbial fermentation process,the fed-batch fermentation could disarm the substrate inhibition and obtain the hyaluronic acid with the larger relative molecular mass and the higher yield.展开更多
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele...State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.展开更多
In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation proc...In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.展开更多
Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), usi...Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), using the process variable trajectories to monitoring the batch process is presented in this paper. It does not need to estimate or fill in the unknown part of the process variable trajectory deviation from the current time until the end. The approach is based on a MPCA method that processes the data in a sequential and adaptive manner. The adaptive rate is easily controlled through a forgetting factor that controls the weight of past data in a summation. This algorithm is used to evaluate the industrial streptomycin fermentation process data and is compared with the traditional MPCA. The results show that the method is more advantageous than MPCA, especially when monitoring multi-stage batch process where the latent vector structure can change at several points during the batch.展开更多
L-(+)-Lactic acid production from corncob hydrolysate as a cheap carbohydrate source by fed-batch fermentation of Rhizopus oryzaeHZS6 was studied. After 96 h of fermentation in a 5 L fermentor, the final concentration...L-(+)-Lactic acid production from corncob hydrolysate as a cheap carbohydrate source by fed-batch fermentation of Rhizopus oryzaeHZS6 was studied. After 96 h of fermentation in a 5 L fermentor, the final concentration of ammonium L-(+)-lactate, average productivity(based on initial xylose concentration) and maximum dry cell weight were 132.4 g/L, 1.38 g/(L·h), and 8.9 g/L respectively. The optical purity of L-(+)-lactate was 98.8%.展开更多
The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to ov...The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.展开更多
5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolve...5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolved oxygen (DO) shock during aerobic fermentation, was introduced to produce 5-aminolevulinic acid with a recombi-nant E. coli. Effects of duration time of DO shock operation on plasmid concentration, intracellular ALA synthase (ALAS) activity and ALA production were investigated in Erlenmeyer shake flasks. The results indicated that both ALAS activity and ALA yield were enhanced in an anaerobic operation of 45 rain in the early exponential phase during fermentation, while they decreased when the anaerobic operation time was further increased to 60 rain. The DO shock protocol was confirmed with the fed-batch fermentation in a 15 L fermenter and the ALA production achieved 9.4 g.L-1 (72 mmol.L-1), which is the highest yield in the fermentation broth reported up to now.展开更多
Purebred microorganisms were employed to upgrade the fermentation process of Zhejiang rosy vinegar. The fermentation cycle was greatly shorten from 5 months to 72 d. The transformation rate of raw materials was increa...Purebred microorganisms were employed to upgrade the fermentation process of Zhejiang rosy vinegar. The fermentation cycle was greatly shorten from 5 months to 72 d. The transformation rate of raw materials was increased from 1:4.5 in the traditional fermentation to 1:5 or more in the upgraded fermentation. The content of organic acids in the traditional vinegar (TRV), the upgraded vinegar (UPV) and the submerged fermentation vinegar (SFV) were also investigated by HPLC. No significant difference was found regarding the proportion of phenylethanol to the total volatile components in UPV (7.47% ± 0.00324%) and TRV (7.23% ± 0.00329%), but it was significantly higher than that in SFV (2.26% ± 0.00143%). This study provides deep insight into upgrading the fermentation process of Zhejiang rosy vinegar by purebred microorganisms.展开更多
Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a po...Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.展开更多
In this paper,a novel fuzzy neural network model,in which an adjustable fuzzy sub-space was designed by uniform design,has been established and used in fed-batch yeast fermentationas an example.A brand-new optimizatio...In this paper,a novel fuzzy neural network model,in which an adjustable fuzzy sub-space was designed by uniform design,has been established and used in fed-batch yeast fermentationas an example.A brand-new optimization sub-network with special structure has been built andgenetic algorithm,guaranteeing the optimization in overall space,is introduced for the feed rateoptimization.On the basis of the model network,the optimal substrate concentration and theoptimal amount of fed-batch at different periods have been studied,aided with the optimizationnetwork and the genetic algorithm separately.The above results can be used as a basis for theestablishment of a fuzzy neural network controller.展开更多
This paper studied the fermentation rules of apple cider vinegar from fruit juice,to provide a theoretical guidance for the production of apple cider vinegar.Using Fuji apples as raw materials,the process parameters(f...This paper studied the fermentation rules of apple cider vinegar from fruit juice,to provide a theoretical guidance for the production of apple cider vinegar.Using Fuji apples as raw materials,the process parameters(fermentation temperature,fermentation time,stirring speed,and inoculation amount)of apple cider vinegar fermentation were optimized through single-factor experiments and response surface analysis.The results indicated that the fermentation temperature had no significant effect on the total acid content of apple cider vinegar fermentation,the fermentation time had an extremely significant effect on the total acid content of apple cider vinegar fermentation,and the stirring speed and inoculation amount had a significant effect on the total acid content of apple cider vinegar fermentation.Through process optimization,the optimal process parameters for apple cider vinegar fermentation are fermentation temperature of 33℃,fermentation time of 39 h,stirring speed of 1500 r/min,and acetic acid bacteria inoculation amount of 7%.Under such conditions,the total acid content of fermented apple cider vinegar is 62.22 g/L,very close to the predicted value of the model,indicating that the process parameters of acetic acid fermentation obtained by response surface methodology(RSM)optimization are reliable and can be used for actual production prediction.展开更多
The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation proce...The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.展开更多
Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan consisting of alternating D-glucuronic acid and N-acetylglueasamine and plays ex- tremely important roles in many biological processes. In this study...Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan consisting of alternating D-glucuronic acid and N-acetylglueasamine and plays ex- tremely important roles in many biological processes. In this study, we optimized fermentation process for the production of HA by Streptococcus zooepidemicus ATCC35246, including fermentation broth composition and various fermentation parameters. The experimental results showed that the optimal fermentation broth composition was: glucose 45 g/L, yeast extract 10 g/L, tryptone 12 g/L, KH2PO4 2 g/L, K2HPO4 . 3H20 2 g/L, MgSO4 · 7H2O 2 g/L, and (NH4 )2SO4 0.4 g/L. The optimal parameters involved in fermentation was: liquid volume 20%, pH 6. 0, rotation speed 180 r/min, fermentation temperature 35 ℃, fermentation duration 18 h, CTAB concentration 25 mg/L. Under the optimized conditions, the yield of HA was 0. 305 g/L, which was dramatically improved by 43.87% compared to that of 0. 212 g/L before optimization.展开更多
The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow conve...The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency.展开更多
The reducing efficiencies of the commonly used heat treatment methods and fermentation processes on aflatoxin M1 (AFM1) in Nigeria were investigated. Seventy samples of fresh cow milk from both conventional and tradit...The reducing efficiencies of the commonly used heat treatment methods and fermentation processes on aflatoxin M1 (AFM1) in Nigeria were investigated. Seventy samples of fresh cow milk from both conventional and traditional dairy cattle herds were collected and analyzed for the determination of AFM1 using Cobra-cell incorporated high performance liquid chromatography. Of these analyzed samples, 56 (80.0%) tested positive for AFM1 out of which 3 milk samples with high AFM1 concentrations were selectively pooled and subjected to varied conditions of heat treatments and fermentation processes using both indigenized and exotic strains of lactic acid bacteria (Lactobacillus bulgaricus + Streptococcus thermophilus and L. rhamnosus and L. plantarum) as starter cultures respectively. Both processes used either singly or combined, demonstrated high degrees of reducing effects on AFM1 levels. Sterilization of the milk at 121?C and 80?C under the same condition of time (15 - 20) min showed significant reduction of up to 58.8% (p 0.05) in the level of AFM1 when compared with the initial mean AFM1 concentration of the untreated fresh milk. The situation was however different around the boiling temperature of 100?C at which point the level of AFM1 reduction was found to be inconsistent. The indigenized combined strains showed some slight margins of AFM1 reduction in the proportions of (20.5, 30.8 and 43.9)% over and above that of the exotic strains (17.4, 30.0 and 41.1)% in 12 h, 48 h and 72 h of fermentation respectively. Generally, fermentation alone showed lower reduction of AFM1 in milk from 24.5% to 43.9% compared with the reducing activities of (35.4 to 58.8)% when heat-treated milk samples were subsequently subjected to varied fermentation conditions.展开更多
Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good metho...Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.展开更多
Biosensors, which are the products of the biotechnology industry, are among the key projects of the 7th, 8th, and 9th Fiveyear Plans of China Science & Technology Developing Programs, respectively, and they play an i...Biosensors, which are the products of the biotechnology industry, are among the key projects of the 7th, 8th, and 9th Fiveyear Plans of China Science & Technology Developing Programs, respectively, and they play an important role in developing and reforming traditional biotechnology. SBA series biosensor analyzer, as the only one commercial biosensor in China, has attracted lots of attention in the process of information gathering and measurement for biological industry with the development of technology and society. In this paper, we presented an overview of the most important contributions dealing with the monitoring of the biochemical analytes in fermentation processes using SBA series biosensor analyzers in China. Future trends of the biosensor analyzer in China were also mentioned in the last section.展开更多
An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categ...An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categories. Using the scheduling strategy, the optimal termination sequence of batches is obtained. Pseudo on-line simulations for testing the proposed algorithm with the data from industrial scale penicillin fermentation are carried out.展开更多
基金Supported by the National Natural Science Foundation of China (20676013)
文摘An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.
基金funded by the National Natural Science Foundation of China(22078018)the Natural Science Foundation of Beijing(2222016).
文摘Acetone-butanol-ethanol(ABE)fermentation is a primary strategy for producing bio-based n-butanol from abundant renewable biomass.In the typical ABE production chain,distillation is an essential unit for high purity ABE productions,but has long been criticized by the energy-inefficient processes due to the extremely low solvents concentration received in the upstream fermentation system.Over the past decades,efforts have been dedicated to developing eco-efficient ABE distillation processes aimed at reducing both energy costs and capital investments.In this review,a comprehensive overview on ABE distillation systems is provided from physico-chemical properties in feed and thermodynamics to the process constructions and applications.The recent trends in distillation sequence construction that fitting with the rapid developed upstream in situ product recovery(ISPR)systems are emphasized.Furthermore,towards developing a more efficient ABE distillation system,the review takes a broad overview of the intensification strategies for ABE distillation.Along with systematic introduction of the key examples,the future directions for ABE distillation techniques development are also discussed towards a sustainable and low-carbon emission biorefineries.
基金Supported by Ningxia Science and Technology Research PlanningItem(NXGG2009-4)~~
文摘[Objective] The research aimed to search and obtain the fermentation method of hyaluronic acid with the high yield.[Method] In the production process of hyaluronic acid by the microbial fermentation method,the influence of substrate concentration on the fermentation was explored.[Result] The glucose had the biggest influence on the hyaluronic acid fermentation.The low concentration of glucose only could synthetize a little bacteria and hyaluronic acid,and the high concentration of glucose could inhibit the growth of bacteria and the formation of hyaluronic acid.Via the exploratory experiment,the fed-batch fermentation could disarm the substrate inhibition.The concrete method was adding 2% glucose before the start of fermentation,and adding 2% glucose at the 14th hour of fermentation,and adding 2% glucose again at the 22nd hour of fermentation.[Conclusion] In the microbial fermentation process,the fed-batch fermentation could disarm the substrate inhibition and obtain the hyaluronic acid with the larger relative molecular mass and the higher yield.
基金Supported by the National Natural Science Foundation of China (20476007, 20676013).
文摘State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.
基金Supported by the National Natural Science Foundation of China(20776119) the National High Technology Research and Development Program of China(2007AA03Z456A) the Special Research Program of the Education Department of Shaanxi Province(07JK417)
文摘In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.
基金Supported by the National High-tech Program of China (No. 2001 AA413110).
文摘Multi-way principal component analysis (MPCA) had been successfully applied to monitoring the batch and semi-batch process in most chemical industry. An improved MPCA approach, step-by-step adaptive MPCA (SAMPCA), using the process variable trajectories to monitoring the batch process is presented in this paper. It does not need to estimate or fill in the unknown part of the process variable trajectory deviation from the current time until the end. The approach is based on a MPCA method that processes the data in a sequential and adaptive manner. The adaptive rate is easily controlled through a forgetting factor that controls the weight of past data in a summation. This algorithm is used to evaluate the industrial streptomycin fermentation process data and is compared with the traditional MPCA. The results show that the method is more advantageous than MPCA, especially when monitoring multi-stage batch process where the latent vector structure can change at several points during the batch.
基金Partially suppored by a grant for the U K DTI- China MOST Collaborative Research
文摘L-(+)-Lactic acid production from corncob hydrolysate as a cheap carbohydrate source by fed-batch fermentation of Rhizopus oryzaeHZS6 was studied. After 96 h of fermentation in a 5 L fermentor, the final concentration of ammonium L-(+)-lactate, average productivity(based on initial xylose concentration) and maximum dry cell weight were 132.4 g/L, 1.38 g/(L·h), and 8.9 g/L respectively. The optical purity of L-(+)-lactate was 98.8%.
基金Supported by the National Natural Science Foundation of China(20676013,61240047)
文摘The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.
基金Supported by the National Natural Science Foundation of China (20306026 and 20876141) and the National Basic Research program of China (2007CB707805).
文摘5-Aminolevulinic acid (ALA) is a common precursor for tetrapyrrole compounds in all kinds of organ isms and has wide applications in agriculture and medicines. In this study, a new strategy, i.e. short-term dissolved oxygen (DO) shock during aerobic fermentation, was introduced to produce 5-aminolevulinic acid with a recombi-nant E. coli. Effects of duration time of DO shock operation on plasmid concentration, intracellular ALA synthase (ALAS) activity and ALA production were investigated in Erlenmeyer shake flasks. The results indicated that both ALAS activity and ALA yield were enhanced in an anaerobic operation of 45 rain in the early exponential phase during fermentation, while they decreased when the anaerobic operation time was further increased to 60 rain. The DO shock protocol was confirmed with the fed-batch fermentation in a 15 L fermenter and the ALA production achieved 9.4 g.L-1 (72 mmol.L-1), which is the highest yield in the fermentation broth reported up to now.
文摘Purebred microorganisms were employed to upgrade the fermentation process of Zhejiang rosy vinegar. The fermentation cycle was greatly shorten from 5 months to 72 d. The transformation rate of raw materials was increased from 1:4.5 in the traditional fermentation to 1:5 or more in the upgraded fermentation. The content of organic acids in the traditional vinegar (TRV), the upgraded vinegar (UPV) and the submerged fermentation vinegar (SFV) were also investigated by HPLC. No significant difference was found regarding the proportion of phenylethanol to the total volatile components in UPV (7.47% ± 0.00324%) and TRV (7.23% ± 0.00329%), but it was significantly higher than that in SFV (2.26% ± 0.00143%). This study provides deep insight into upgrading the fermentation process of Zhejiang rosy vinegar by purebred microorganisms.
文摘Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.
基金Supported by the National Natural Science Foundation of China,No.29476248 and Trans-Century Training Program Foundation for the Talents by the State Education Commission.
文摘In this paper,a novel fuzzy neural network model,in which an adjustable fuzzy sub-space was designed by uniform design,has been established and used in fed-batch yeast fermentationas an example.A brand-new optimization sub-network with special structure has been built andgenetic algorithm,guaranteeing the optimization in overall space,is introduced for the feed rateoptimization.On the basis of the model network,the optimal substrate concentration and theoptimal amount of fed-batch at different periods have been studied,aided with the optimizationnetwork and the genetic algorithm separately.The above results can be used as a basis for theestablishment of a fuzzy neural network controller.
基金Supported by Industrial Promotion Project of Shandong Science and Technology Park in 2017(2017YQ016).
文摘This paper studied the fermentation rules of apple cider vinegar from fruit juice,to provide a theoretical guidance for the production of apple cider vinegar.Using Fuji apples as raw materials,the process parameters(fermentation temperature,fermentation time,stirring speed,and inoculation amount)of apple cider vinegar fermentation were optimized through single-factor experiments and response surface analysis.The results indicated that the fermentation temperature had no significant effect on the total acid content of apple cider vinegar fermentation,the fermentation time had an extremely significant effect on the total acid content of apple cider vinegar fermentation,and the stirring speed and inoculation amount had a significant effect on the total acid content of apple cider vinegar fermentation.Through process optimization,the optimal process parameters for apple cider vinegar fermentation are fermentation temperature of 33℃,fermentation time of 39 h,stirring speed of 1500 r/min,and acetic acid bacteria inoculation amount of 7%.Under such conditions,the total acid content of fermented apple cider vinegar is 62.22 g/L,very close to the predicted value of the model,indicating that the process parameters of acetic acid fermentation obtained by response surface methodology(RSM)optimization are reliable and can be used for actual production prediction.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(BK20130531)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD[2011]6)Jiangsu Government Scholarship
文摘The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes.
基金Supported by Scientific Research Fund of Sichuan University of Science&Engineering(2011RC12,2014KY02)Scientific Research Foundation of the Education Department of Sichuan Province(15ZA0222)+1 种基金Research Project of Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province(NJ2013-06)Sichuan Provincial Undergraduate Training Programs for Innovation and Entrepreneurship(201410622021)
文摘Hyaluronic acid (HA) is a high molecular weight glycosaminoglycan consisting of alternating D-glucuronic acid and N-acetylglueasamine and plays ex- tremely important roles in many biological processes. In this study, we optimized fermentation process for the production of HA by Streptococcus zooepidemicus ATCC35246, including fermentation broth composition and various fermentation parameters. The experimental results showed that the optimal fermentation broth composition was: glucose 45 g/L, yeast extract 10 g/L, tryptone 12 g/L, KH2PO4 2 g/L, K2HPO4 . 3H20 2 g/L, MgSO4 · 7H2O 2 g/L, and (NH4 )2SO4 0.4 g/L. The optimal parameters involved in fermentation was: liquid volume 20%, pH 6. 0, rotation speed 180 r/min, fermentation temperature 35 ℃, fermentation duration 18 h, CTAB concentration 25 mg/L. Under the optimized conditions, the yield of HA was 0. 305 g/L, which was dramatically improved by 43.87% compared to that of 0. 212 g/L before optimization.
基金National Natural Science Foundation of China(No.20676013)
文摘The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency.
文摘The reducing efficiencies of the commonly used heat treatment methods and fermentation processes on aflatoxin M1 (AFM1) in Nigeria were investigated. Seventy samples of fresh cow milk from both conventional and traditional dairy cattle herds were collected and analyzed for the determination of AFM1 using Cobra-cell incorporated high performance liquid chromatography. Of these analyzed samples, 56 (80.0%) tested positive for AFM1 out of which 3 milk samples with high AFM1 concentrations were selectively pooled and subjected to varied conditions of heat treatments and fermentation processes using both indigenized and exotic strains of lactic acid bacteria (Lactobacillus bulgaricus + Streptococcus thermophilus and L. rhamnosus and L. plantarum) as starter cultures respectively. Both processes used either singly or combined, demonstrated high degrees of reducing effects on AFM1 levels. Sterilization of the milk at 121?C and 80?C under the same condition of time (15 - 20) min showed significant reduction of up to 58.8% (p 0.05) in the level of AFM1 when compared with the initial mean AFM1 concentration of the untreated fresh milk. The situation was however different around the boiling temperature of 100?C at which point the level of AFM1 reduction was found to be inconsistent. The indigenized combined strains showed some slight margins of AFM1 reduction in the proportions of (20.5, 30.8 and 43.9)% over and above that of the exotic strains (17.4, 30.0 and 41.1)% in 12 h, 48 h and 72 h of fermentation respectively. Generally, fermentation alone showed lower reduction of AFM1 in milk from 24.5% to 43.9% compared with the reducing activities of (35.4 to 58.8)% when heat-treated milk samples were subsequently subjected to varied fermentation conditions.
基金Supported by the National Natural Science Foundation of China (20476007)
文摘Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.
基金Supported by the Postdoctoral Innovation Fund of Shandong Province(201303032)the Independent Innovation Projects of Shandong Province(2012CX20505)the National 863 High Technology Project of the Ministry of Science and Technology of China(2012AA021201)
文摘Biosensors, which are the products of the biotechnology industry, are among the key projects of the 7th, 8th, and 9th Fiveyear Plans of China Science & Technology Developing Programs, respectively, and they play an important role in developing and reforming traditional biotechnology. SBA series biosensor analyzer, as the only one commercial biosensor in China, has attracted lots of attention in the process of information gathering and measurement for biological industry with the development of technology and society. In this paper, we presented an overview of the most important contributions dealing with the monitoring of the biochemical analytes in fermentation processes using SBA series biosensor analyzers in China. Future trends of the biosensor analyzer in China were also mentioned in the last section.
基金supported by the Open Project Program,State key Laboratory of Bioreactor Engineering/ECUSTthe Natural Science Foundation of China(No.60174024).
文摘An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categories. Using the scheduling strategy, the optimal termination sequence of batches is obtained. Pseudo on-line simulations for testing the proposed algorithm with the data from industrial scale penicillin fermentation are carried out.