期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nonlinear frequency prediction and uncertainty analysis for fully clamped laminates by using a self-developed multi-scale neural networks system
1
作者 Yuan LIU Xuan ZHANG +6 位作者 Xibin CAO Jinsheng GUO Zhongxi SHAO Qingyang DENG Pengbo FU Yaodong HOU Haipeng CHEN 《Chinese Journal of Aeronautics》 2025年第9期225-250,共26页
To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate ... To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate with all four edges clamped(CCCC)are derived based on Navier's method and Galerkin's method.The novelty of the current work is that the number of unknowns in the displacement field model of a CCCC plate with free midsurface(CCCC-2 plate)is only three compared with four or five in cases of other exposed methods.The present analytical method is proved to be accurate and reliable by comparing linear natural frequencies and nonlinear natural frequencies with other models available in the open literature.Furthermore,a novel method for analyzing effects of mean values and tolerance zones of uncertain structural parameters on random frequencies is proposed based on a self-developed Multiscale Feature Extraction and Fusion Network(MFEFN)system.Compared with a direct Monte Carlo Simulation(MCS),the MFEFNbased procedure significantly reduces the calculation burden with a guarantee of accuracy.Our research provides a method to calculate nonlinear natural frequencies under two boundary conditions and presentes a surrogate model to predict frequencies for accuracy analysis and optimization design. 展开更多
关键词 Geometric nonlinearity LAMINATES Multiscale feature extraction and fusion networks(MFEFN) Natural frequency Uncertainty analysis
原文传递
Wind Turbine Gearbox Fault Diagnosis Based on Multi-sensor Signals Fusion 被引量:2
2
作者 Yao Zhao Ziyu Song +2 位作者 Dongdong Li Rongrong Qian Shunfu Lin 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第4期96-109,共14页
This paper proposes a novel fault diagnosis method by fusing the information from multi-sensor signals to improve the reliability of the conventional vibration-based wind turbine drivetrain gearbox fault diagnosis met... This paper proposes a novel fault diagnosis method by fusing the information from multi-sensor signals to improve the reliability of the conventional vibration-based wind turbine drivetrain gearbox fault diagnosis methods.The method fully extracts fault features for variable speed,insufficient samples,and strong noise scenarios that may occur in the actual operation of a wind turbine planetary gearbox.First,multiple sensor signals are added to the diagnostic model,and multiple stacked denoising auto-encoders are designed and improved to extract the fault information.Then,a cycle reservoir with regular jumps is introduced to fuse multidimensional fault information and output diagnostic results in response to the insufficient ability to process fused information by the conventional Softmax classifier.In addition,the competitive swarm optimizer algorithm is introduced to address the challenge of obtaining the optimal combination of parameters in the network.Finally,the validation results show that the proposed method can increase fault diagnostic accuracy and improve robustness. 展开更多
关键词 Wind turbine gearbox fault diagnosis multiple scenarios deep learning stacked denoising au-to-encoder cycle reservoir with regular jumps feature fusion network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部