期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
MSL-Net:a lightweight apple leaf disease detection model based on multi-scale feature fusion
1
作者 YANG Kangyi YAN Chunman 《Optoelectronics Letters》 2025年第12期745-752,共8页
Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstl... Aiming at the problem of low detection accuracy due to the different scale sizes of apple leaf disease spots and their similarity to the background,this paper proposes a multi-scale lightweight network(MSL-Net).Firstly,a multiplexed aggregated feature extraction network is proposed using residual bottleneck block(RES-Bottleneck)and middle partial-convolution(MP-Conv)to capture multi-scale spatial features and enhance focus on disease features for better differentiation between disease targets and background information.Secondly,a lightweight feature fusion network is designed using scale-fuse concatenation(SF-Cat)and triple-scale sequence feature fusion(TSSF)module to merge multi-scale feature maps comprehensively.Depthwise convolution(DWConv)and GhostNet lighten the network,while the cross stage partial bottleneck with 3 convolutions ghost-normalization attention module(C3-GN)reduces missed detections by suppressing irrelevant background information.Finally,soft non-maximum suppression(Soft-NMS)is used in the post-processing stage to improve the problem of misdetection of dense disease sites.The results show that the MSL-Net improves mean average precision at intersection over union of 0.5(mAP@0.5)by 2.0%over the baseline you only look once version 5s(YOLOv5s)and reduces parameters by 44%,reducing computation by 27%,outperforming other state-of-the-art(SOTA)models overall.This method also shows excellent performance compared to the latest research. 展开更多
关键词 enhance focus disease features background i multi scale feature fusion apple leaf disease spots residual bottleneck block res bottleneck multiplexed aggregated feature extraction network lightweight network apple leaf disease detection
原文传递
Nonlinear frequency prediction and uncertainty analysis for fully clamped laminates by using a self-developed multi-scale neural networks system
2
作者 Yuan LIU Xuan ZHANG +6 位作者 Xibin CAO Jinsheng GUO Zhongxi SHAO Qingyang DENG Pengbo FU Yaodong HOU Haipeng CHEN 《Chinese Journal of Aeronautics》 2025年第9期225-250,共26页
To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate ... To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate with all four edges clamped(CCCC)are derived based on Navier's method and Galerkin's method.The novelty of the current work is that the number of unknowns in the displacement field model of a CCCC plate with free midsurface(CCCC-2 plate)is only three compared with four or five in cases of other exposed methods.The present analytical method is proved to be accurate and reliable by comparing linear natural frequencies and nonlinear natural frequencies with other models available in the open literature.Furthermore,a novel method for analyzing effects of mean values and tolerance zones of uncertain structural parameters on random frequencies is proposed based on a self-developed Multiscale Feature Extraction and Fusion Network(MFEFN)system.Compared with a direct Monte Carlo Simulation(MCS),the MFEFNbased procedure significantly reduces the calculation burden with a guarantee of accuracy.Our research provides a method to calculate nonlinear natural frequencies under two boundary conditions and presentes a surrogate model to predict frequencies for accuracy analysis and optimization design. 展开更多
关键词 Geometric nonlinearity LAMINATES Multiscale feature extraction and fusion networks(MFEFN) Natural frequency Uncertainty analysis
原文传递
Image Denoising Using Dual Convolutional Neural Network with Skip Connection 被引量:1
3
作者 Mengnan Lü Xianchun Zhou +2 位作者 Zhiting Du Yuze Chen Binxin Tang 《Instrumentation》 2024年第3期74-85,共12页
In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training cos... In recent years, deep convolutional neural networks have shown superior performance in image denoising. However, deep network structures often come with a large number of model parameters, leading to high training costs and long inference times, limiting their practical application in denoising tasks. This paper proposes a new dual convolutional denoising network with skip connections(DECDNet), which achieves an ideal balance between denoising effect and network complexity. The proposed DECDNet consists of a noise estimation network, a multi-scale feature extraction network, a dual convolutional neural network, and dual attention mechanisms. The noise estimation network is used to estimate the noise level map, and the multi-scale feature extraction network is combined to improve the model's flexibility in obtaining image features. The dual convolutional neural network branch design includes convolution and dilated convolution interactive connections, with the lower branch consisting of dilated convolution layers, and both branches using skip connections. Experiments show that compared with other models, the proposed DECDNet achieves superior PSNR and SSIM values at all compared noise levels, especially at higher noise levels, showing robustness to images with higher noise levels. It also demonstrates better visual effects, maintaining a balance between denoising and detail preservation. 展开更多
关键词 image denoising convolutional neural network skip connections multi-scale feature extraction network noise estimation network
原文传递
DDoS Attack Detection via Multi-Scale Convolutional Neural Network 被引量:2
4
作者 Jieren Cheng Yifu Liu +3 位作者 Xiangyan Tang Victor SSheng Mengyang Li Junqi Li 《Computers, Materials & Continua》 SCIE EI 2020年第3期1317-1333,共17页
Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.... Distributed Denial-of-Service(DDoS)has caused great damage to the network in the big data environment.Existing methods are characterized by low computational efficiency,high false alarm rate and high false alarm rate.In this paper,we propose a DDoS attack detection method based on network flow grayscale matrix feature via multi-scale convolutional neural network(CNN).According to the different characteristics of the attack flow and the normal flow in the IP protocol,the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary.Based on the network flow grayscale matrix feature(GMF),the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation,global features and local features of the network flow are extracted.A DDoS attack classifier based on multi-scale convolution neural network is constructed.Experiments show that compared with correlation methods,this method can improve the robustness of the classifier,reduce the false alarm rate and the missing alarm rate. 展开更多
关键词 DDoS attack detection convolutional neural network network flow feature extraction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部