Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively r...Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively realize these advantages,a fine-grained collection and analysis of smart meter data is essential.However,the high dimensionality and volume of such time-series present significant challenges,including increased computational load,data transmission overhead,latency,and complexity in real-time analysis.This study proposes a novel,computationally efficient framework for feature extraction and selection tailored to smart meter time-series data.The approach begins with an extensive offline analysis,where features are derived from multiple domains—time,frequency,and statistical—to capture diverse signal characteristics.Various feature sets are fused and evaluated using robust machine learning classifiers to identify the most informative combinations for automated appliance categorization.The bestperforming fused features set undergoes further refinement using Analysis of Variance(ANOVA)to identify the most discriminative features.The mathematical models,used to compute the selected features,are optimized to extract them with computational efficiency during online processing.Moreover,a notable dimension reduction is secured which facilitates data storage,transmission,and post processing.Onward,a specifically designed LogitBoost(LB)based ensemble of Random Forest base learners is used for an automated classification.The proposed solution demonstrates a high classification accuracy(97.93%)for the case of nine-class problem and dimension reduction(17.33-fold)with minimal front-end computational requirements,making it well-suited for real-world applications in smart grid environments.展开更多
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support v...Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support vector machine(SVM),as well as ensemble methods,such as Gradient Boosting and eXtreme gradient boosting(XGBoost),are often plagued by high computational costs,which makes it challenging for them to perform real-time detection.In this regard,we suggested an attack detection approach that integrates Visual Geometry Group 16(VGG16),Artificial Rabbits Optimizer(ARO),and Random Forest Model to increase detection accuracy and operational efficiency in Internet of Things(IoT)networks.In the suggested model,the extraction of features from malware pictures was accomplished with the help of VGG16.The prediction process is carried out by the random forest model using the extracted features from the VGG16.Additionally,ARO is used to improve the hyper-parameters of the random forest model of the random forest.With an accuracy of 96.36%,the suggested model outperforms the standard models in terms of accuracy,F1-score,precision,and recall.The comparative research highlights our strategy’s success,which improves performance while maintaining a lower computational cost.This method is ideal for real-time applications,but it is effective.展开更多
1 Introduction Sound event detection(SED)aims to identify and locate specific sound event categories and their corresponding timestamps within continuous audio streams.To overcome the limitations posed by the scarcity...1 Introduction Sound event detection(SED)aims to identify and locate specific sound event categories and their corresponding timestamps within continuous audio streams.To overcome the limitations posed by the scarcity of strongly labeled training data,researchers have increasingly turned to semi-supervised learning(SSL)[1],which leverages unlabeled data to augment training and improve detection performance.Among many SSL methods[2-4].展开更多
This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting transluce...This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting translucent smoke,and variable smoke scales.First,the convolution module of feature extraction in YOLOv5s backbone network is replaced with asymmetric convolution block re-parameterization convolution to improve the detection of different shapes of smoke.Then,coordinate attention mechanism is introduced in the deeper layer of the backbone network to further improve the localization of translucent smoke.Finally,the detection of smoke at different scales is further improved by using the feature pyramid convolution module instead of the standard convolution module of the feature pyramid in the model.The experimental results demonstrate the feasibility and superiority of the proposed model for multi-scene smoke detection.展开更多
The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for th...The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for the market service for green energy consumers.This study proposed a two-stage feature extraction approach for green energy consumers leveraging clustering and termfrequency-inverse document frequency(TF-IDF)algorithms within a knowledge graph framework to provide an information basis that supports the green development of the retail electricity market.First,the multi-source heterogeneous data of green energy consumers under an actual market environment is systematically introduced and the information is categorized into discrete,interval,and relational features.A clustering algorithm was employed to extract features of the trading behavior of green energy consumers in the first stage using the parameter data of green retail electricity contracts.Then,TF-IDF algorithm was applied in the second stage to extract features for green energy consumers in different clusters.Finally,the effectiveness of the proposed approach was validated based on the actual operational data in a southern province of China.It is shown that the most significant discrepancy between the retail trading behaviors of green energy consumers is the power share of green retail packages,whose averaged values are 25.64%,50%,39.66%,and 24.89%in four different clusters,respectively.Additionally,power supply bureaus and electricity retail companies affects the behavior of the green energy consumers most significantly.展开更多
Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,...Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds.展开更多
Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis i...Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.展开更多
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored...[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.展开更多
Ear recognition is a new kind of biometric identification technology now.Feature extraction is a key step in pattern recognition technology,which determines the accuracy of classification results.The method of single ...Ear recognition is a new kind of biometric identification technology now.Feature extraction is a key step in pattern recognition technology,which determines the accuracy of classification results.The method of single feature extraction can achieve high recognition rate under certain conditions,but the use of double feature extraction can overcome the limitation of single feature extraction.In order to improve the accuracy of classification results,this paper proposes a new method,that is,the method of complementary double feature extraction based on Principal Component Analysis(PCA)and Fisherface,and we apply it to human ear image recognition.The experiment was carried out on the ear image library provided by the University of Science and Technology Beijing.The results show that the ear recognition rate of the proposed method is significantly higher than the single feature extraction using PCA,Fisherface,or Independent component analysis(ICA)alone.展开更多
Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smar...Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.展开更多
It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory...It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect.展开更多
Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) wer...Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%.展开更多
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption...In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.展开更多
It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent...It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.展开更多
Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisf...Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.展开更多
A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method ...A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective.展开更多
The existence of remnant particles, which significantly reduce the reliability of relays, is a serious problem for aerospace relays. The traditional method for detecting remnant particles-particle impact noise detecti...The existence of remnant particles, which significantly reduce the reliability of relays, is a serious problem for aerospace relays. The traditional method for detecting remnant particles-particle impact noise detection (PIND)-can be used merely to detect the existence of the particle; it is not able to provide any information about the particles' material. However, information on the material of the particles is very helpful for analyzing the causes of remnants. By analyzing the output acoustic signals from a PIND tester, this paper proposes three feature extraction methods: unit energy average pulse durative time, shape parameter of signal power spectral density (PSD), and pulse linear predictive coding coefficient sequence. These methods allow identified remnants to be classified into four categories based on their material. Furthermore, we prove the validity of this new method by processing P1ND signals from actual tests.展开更多
Multi-model approach can significantly improve the prediction performance of soft sensors in the process with multiple operational conditions.However,traditional clustering algorithms may result in overlapping phenome...Multi-model approach can significantly improve the prediction performance of soft sensors in the process with multiple operational conditions.However,traditional clustering algorithms may result in overlapping phenomenon in subclasses,so that edge classes and outliers cannot be effectively dealt with and the modeling result is not satisfactory.In order to solve these problems,a new feature extraction method based on weighted kernel Fisher criterion is presented to improve the clustering accuracy,in which feature mapping is adopted to bring the edge classes and outliers closer to other normal subclasses.Furthermore,the classified data are used to develop a multiple model based on support vector machine.The proposed method is applied to a bisphenol A production process for prediction of the quality index.The simulation results demonstrate its ability in improving the data classification and the prediction performance of the soft sensor.展开更多
文摘Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids.It offers substantial benefits across social,environmental,and economic dimensions.To effectively realize these advantages,a fine-grained collection and analysis of smart meter data is essential.However,the high dimensionality and volume of such time-series present significant challenges,including increased computational load,data transmission overhead,latency,and complexity in real-time analysis.This study proposes a novel,computationally efficient framework for feature extraction and selection tailored to smart meter time-series data.The approach begins with an extensive offline analysis,where features are derived from multiple domains—time,frequency,and statistical—to capture diverse signal characteristics.Various feature sets are fused and evaluated using robust machine learning classifiers to identify the most informative combinations for automated appliance categorization.The bestperforming fused features set undergoes further refinement using Analysis of Variance(ANOVA)to identify the most discriminative features.The mathematical models,used to compute the selected features,are optimized to extract them with computational efficiency during online processing.Moreover,a notable dimension reduction is secured which facilitates data storage,transmission,and post processing.Onward,a specifically designed LogitBoost(LB)based ensemble of Random Forest base learners is used for an automated classification.The proposed solution demonstrates a high classification accuracy(97.93%)for the case of nine-class problem and dimension reduction(17.33-fold)with minimal front-end computational requirements,making it well-suited for real-world applications in smart grid environments.
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.
基金funded by Institutional Fund Projects under grant no.(IFPDP-261-22)。
文摘Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support vector machine(SVM),as well as ensemble methods,such as Gradient Boosting and eXtreme gradient boosting(XGBoost),are often plagued by high computational costs,which makes it challenging for them to perform real-time detection.In this regard,we suggested an attack detection approach that integrates Visual Geometry Group 16(VGG16),Artificial Rabbits Optimizer(ARO),and Random Forest Model to increase detection accuracy and operational efficiency in Internet of Things(IoT)networks.In the suggested model,the extraction of features from malware pictures was accomplished with the help of VGG16.The prediction process is carried out by the random forest model using the extracted features from the VGG16.Additionally,ARO is used to improve the hyper-parameters of the random forest model of the random forest.With an accuracy of 96.36%,the suggested model outperforms the standard models in terms of accuracy,F1-score,precision,and recall.The comparative research highlights our strategy’s success,which improves performance while maintaining a lower computational cost.This method is ideal for real-time applications,but it is effective.
基金supported by the Zhejiang Provincial Key R&D Program(Nos.2024C01108,2023C01030,2023C01034)the Hangzhou Key R&D Program(Nos.2023SZD0046,2024SZD1A03)the Ningbo Key R&D Program(No.2024Z114).
文摘1 Introduction Sound event detection(SED)aims to identify and locate specific sound event categories and their corresponding timestamps within continuous audio streams.To overcome the limitations posed by the scarcity of strongly labeled training data,researchers have increasingly turned to semi-supervised learning(SSL)[1],which leverages unlabeled data to augment training and improve detection performance.Among many SSL methods[2-4].
基金the Natural Science Foundation of Zhejiang Province(Nos.LY20F020015 and LY21F020015)the National Natural Science Foundation of China(Nos.61972121 and 61902099)。
文摘This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes,difficulty in locating and detecting translucent smoke,and variable smoke scales.First,the convolution module of feature extraction in YOLOv5s backbone network is replaced with asymmetric convolution block re-parameterization convolution to improve the detection of different shapes of smoke.Then,coordinate attention mechanism is introduced in the deeper layer of the backbone network to further improve the localization of translucent smoke.Finally,the detection of smoke at different scales is further improved by using the feature pyramid convolution module instead of the standard convolution module of the feature pyramid in the model.The experimental results demonstrate the feasibility and superiority of the proposed model for multi-scene smoke detection.
基金support by the Science and Technology Project of Guangdong Power Exchange Center Co.,Ltd.(No.GDKJXM20222599)National Natural Science Foundation of China(No.52207104)Natural Science Foundation of Guangdong Province(No.2024A1515010426).
文摘The rapid development of electricity retail market has prompted an increasing number of electricity consumers to sign green electricity contracts with retail electricity companies,which poses greater challenges for the market service for green energy consumers.This study proposed a two-stage feature extraction approach for green energy consumers leveraging clustering and termfrequency-inverse document frequency(TF-IDF)algorithms within a knowledge graph framework to provide an information basis that supports the green development of the retail electricity market.First,the multi-source heterogeneous data of green energy consumers under an actual market environment is systematically introduced and the information is categorized into discrete,interval,and relational features.A clustering algorithm was employed to extract features of the trading behavior of green energy consumers in the first stage using the parameter data of green retail electricity contracts.Then,TF-IDF algorithm was applied in the second stage to extract features for green energy consumers in different clusters.Finally,the effectiveness of the proposed approach was validated based on the actual operational data in a southern province of China.It is shown that the most significant discrepancy between the retail trading behaviors of green energy consumers is the power share of green retail packages,whose averaged values are 25.64%,50%,39.66%,and 24.89%in four different clusters,respectively.Additionally,power supply bureaus and electricity retail companies affects the behavior of the green energy consumers most significantly.
基金supported by the National Natural Science Foundation of China under Grant 62306128the Basic Science Research Project of Jiangsu Provincial Department of Education under Grant 23KJD520003the Leading Innovation Project of Changzhou Science and Technology Bureau under Grant CQ20230072.
文摘Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems.However,existing methods struggle with small target sizes,complex backgrounds,low-quality image acquisition,and interference from contamination.To address these challenges,this paper proposes the Real-time Cable Defect Detection Network(RC2DNet),which achieves an optimal balance between detection accuracy and computational efficiency.Unlike conventional approaches,RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids,multi-level feature fusion,and an adaptive weighting mechanism.Additionally,a boundary feature enhancement module is designed,incorporating boundary-aware convolution,a novel boundary attention mechanism,and an improved loss function to significantly enhance boundary localization accuracy.Experimental results demonstrate that RC2DNet outperforms state-of-the-art methods in precision,recall,F1-score,mean Intersection over Union(mIoU),and frame rate,enabling real-time and highly accurate cable defect detection in complex backgrounds.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2006AA04Z416)the National Natural Science Foundation of China (No50538020)
文摘Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.
基金Supported by the National Natural Science Foundation of China(31101085)the Program for Young Core Teachers of Colleges in Henan(2011GGJS-094)the Scientific Research Project for the High Level Talents,North China University of Water Conservancy and Hydroelectric Power~~
文摘[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.
基金National Key R&D Program of China(No:2019YFD0901605).
文摘Ear recognition is a new kind of biometric identification technology now.Feature extraction is a key step in pattern recognition technology,which determines the accuracy of classification results.The method of single feature extraction can achieve high recognition rate under certain conditions,but the use of double feature extraction can overcome the limitation of single feature extraction.In order to improve the accuracy of classification results,this paper proposes a new method,that is,the method of complementary double feature extraction based on Principal Component Analysis(PCA)and Fisherface,and we apply it to human ear image recognition.The experiment was carried out on the ear image library provided by the University of Science and Technology Beijing.The results show that the ear recognition rate of the proposed method is significantly higher than the single feature extraction using PCA,Fisherface,or Independent component analysis(ICA)alone.
基金Supported by Shaanxi Provincial Overall Innovation Project of Science and Technology,China(Grant No.2013KTCQ01-06)
文摘Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.
基金supported by National Natural Science Foundation of China (Grant No. 50805021)
文摘It is well known that the human auditory system possesses remarkable capabilities to analyze and identify signals. Therefore, it would be significant to build an auditory model based on the mechanism of human auditory systems, which may improve the effects of mechanical signal analysis and enrich the methods of mechanical faults features extraction. However the existing methods are all based on explicit senses of mathematics or physics, and have some shortages on distinguishing different faults, stability, and suppressing the disturbance noise, etc. For the purpose of improving the performances of the work of feature extraction, an auditory model, early auditory(EA) model, is introduced for the first time. This auditory model transforms time domain signal into auditory spectrum via bandpass filtering, nonlinear compressing, and lateral inhibiting by simulating the principle of the human auditory system. The EA model is developed with the Gammatone filterbank as the basilar membrane. According to the characteristics of vibration signals, a method is proposed for determining the parameter of inner hair cells model of EA model. The performance of EA model is evaluated through experiments on four rotor faults, including misalignment, rotor-to-stator rubbing, oil film whirl, and pedestal looseness. The results show that the auditory spectrum, output of EA model, can effectively distinguish different faults with satisfactory stability and has the ability to suppress the disturbance noise. Then, it is feasible to apply auditory model, as a new method, to the feature extraction for mechanical faults diagnosis with effect.
基金supports by the Program for New Century Excellent Talents in Chinese Universities (No.NCET-08-0726)Beijing Nova Program (No. 2007B027)the Fundamental Research Funds for the Central Universities (No. FRF-TP-09-027B)
文摘Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%.
基金supported by National Natural Science Foundation of China (Grant No. 50875016, 51075023)Fundamental Research Funds for the Central Universities of China (Grant No. JD0903, JD0904)
文摘In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.
基金This project is supported by National Natural Science Foundation of China (No.50275154) Municipal Natural Science Foundation of Chongqing, China (No.8773).
文摘It is an important precondition for machine fault diagnosis that vibrationsignal can be extracted effectively. Based on the characteristic of noise interfused during thecourse of sampling vibration signal, independent component analysis (ICA) method is combined withwavelet to de-noise. Firstly, The sampled signal can be separated with ICA, then the function offrequency band chosen with multi-resolution wavelet transform can be used to judge whether thestochastic disturbance singular signal is interfused. By these ways, the vibration signals can beextracted effectively, which provides favorable condition for subsequent feature detection ofvibration signal and fault diagnosis.
基金supported by the National Natural Science Foundation of China (No. 51201182)
文摘Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.
文摘A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective.
基金China Science Technology and Industry Foundation for National Defense (FEBG 27100001)
文摘The existence of remnant particles, which significantly reduce the reliability of relays, is a serious problem for aerospace relays. The traditional method for detecting remnant particles-particle impact noise detection (PIND)-can be used merely to detect the existence of the particle; it is not able to provide any information about the particles' material. However, information on the material of the particles is very helpful for analyzing the causes of remnants. By analyzing the output acoustic signals from a PIND tester, this paper proposes three feature extraction methods: unit energy average pulse durative time, shape parameter of signal power spectral density (PSD), and pulse linear predictive coding coefficient sequence. These methods allow identified remnants to be classified into four categories based on their material. Furthermore, we prove the validity of this new method by processing P1ND signals from actual tests.
基金Supported by the National Natural Science Foundation of China(61273070)the Foundation of Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Multi-model approach can significantly improve the prediction performance of soft sensors in the process with multiple operational conditions.However,traditional clustering algorithms may result in overlapping phenomenon in subclasses,so that edge classes and outliers cannot be effectively dealt with and the modeling result is not satisfactory.In order to solve these problems,a new feature extraction method based on weighted kernel Fisher criterion is presented to improve the clustering accuracy,in which feature mapping is adopted to bring the edge classes and outliers closer to other normal subclasses.Furthermore,the classified data are used to develop a multiple model based on support vector machine.The proposed method is applied to a bisphenol A production process for prediction of the quality index.The simulation results demonstrate its ability in improving the data classification and the prediction performance of the soft sensor.