A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
Vagus nerve stimulation(VNS)and stroke:Stroke is the second leading cause of death and the third leading cause of disability worldwide(Baig et al.,2023).There have been significant paradigm shifts in the management of...Vagus nerve stimulation(VNS)and stroke:Stroke is the second leading cause of death and the third leading cause of disability worldwide(Baig et al.,2023).There have been significant paradigm shifts in the management of acute ischemic stroke through mechanical thrombectomy.In chronic ischemic stroke,invasive VNS paired with rehabilitation is associated with a significant increase in upper limb motor recovery and is FDA-approved(Baig et al.,2023).There are no treatments of similar efficacy in acute intracerebral hemorrhage(ICH)where several promising trials,e.g.,TICH-2,STOP-AUST,and TRAIGE did not show improvements in functional outcomes(Puy et al.,2023).展开更多
Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,whic...Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application.展开更多
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog...An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.展开更多
Objective To evaluate the association of GGN repeat polymorphism of androgen receptor(AR)with ovarian reserve and ovarian response in controlled ovarian stimulation(COS).Methods This genetic association study was cond...Objective To evaluate the association of GGN repeat polymorphism of androgen receptor(AR)with ovarian reserve and ovarian response in controlled ovarian stimulation(COS).Methods This genetic association study was conducted among a total of 361 women aged≤40 years with basal FSH≤12 U/L undergoing the GnRH-agonist long protocol for COS in a university affiliated IVF center.GGN repeat in the AR gene was analyzed with Sanger sequencing.The primary endpoint was the number of antral follicle counts(AFCs),and the secondary endpoints were stimulation days,total dose of gonadotropin(Gn)used,total number of retrieved oocytes,ovarian sensitivity index,and follicular output rate.Results The GGN repeat in exon 1 of the AR gene ranged from 13 to 24,and the median repeat length was 22.Based on the genotypes(S for GGN repeats<22,L for GGN repeats≥22),the patients were divided into 3 groups:SS,SL,and LL.Generalized regression analysis indicated that the number of AFCs in group SS was significantly lower than those in group SL(adjusted β=1.8,95%CI:0.2-3.4,P=0.024)and group LL(adjusted β=1.5,95%CI:0.2-2.7,P=0.021).No significant difference was observed in the number of AFCs between group SL and group LL(P>0.05).Generalized regression analysis indicated no significant differences in ovarian stimulation parameters among the 3 groups,either before or after adjusting for confounding factors(P>0.05).Conclusion GGN repeat length on the AR gene is associated with AFC but not with ovarian response in Chinese women,indicating that AR gene polymorphisms may affect ovarian reserve.展开更多
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur...Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.展开更多
Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve...Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve markers: Anti-Mullerian hormone (AMH) and antral follicle count (AFC), and the response to ovarian stimulation at in vitro fertilization (IVF) centres in Douala Cameroon. Methods: This was a hospital based cross-sectional sectional analytic study carried out over a period of 3 years, 4 months at Clinique de l’Aéroport, Clinique Odyssée and Clinique Urogyn. Inclusion criteria were: Female partners of infertile couples undergoing ovarian stimulation for an in vitro fertilization cycle, patients who had both ovaries and had done either AMH, AFC or both before ovarian stimulation. Patients were divided into three groups based on the number of oocytes retrieved: low ovarian response for ≤3 oocytes, normal ovarian response for 4 - 15 oocytes and high ovarian response for >15 oocytes. Data obtained was analyzed by SPSS version 25.0. Results: The ages of participants ranged from 20 - 4 7 years, with a mean age of 34.11 ± 5.11 years. Most of them had secondary infertility (57.9%). The GnRH antagonist protocol was mainly used, and ovulation was triggered using HCG predominantly. On Multivariate analysis, age and history of PCOS were significantly associated with ovarian response in the low and high ovarian response groups, respectively. Conclusion: AMH has a better predictive value than AFC, however, it is less sensitive but more specific than AFC.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
Stroke remains a leading cause of long-term disability worldwide.There is an unmet need for neuromodulatory therapies that can mitigate against neurovascular injury and potentially promote neurological recovery.Transc...Stroke remains a leading cause of long-term disability worldwide.There is an unmet need for neuromodulatory therapies that can mitigate against neurovascular injury and potentially promote neurological recovery.Transcutaneous vagus nerve stimulation has been demonstrated to show potential therapeutic effects in both acute and chronic stroke.However,previously published research has only investigated a narrow range of stimulation settings and indications.In this review,we detail the ongoing studies of transcutaneous vagus nerve stimulation in stroke through systematic searches of registered clinical trials.We summarize the upcoming clinical trials of transcutaneous vagus nerve stimulation in stroke,highlighting their indications,parameter settings,scope,and limitations.We further explore the challenges and barriers associated with the implementation of transcutaneous vagus nerve stimulation in acute stroke and stroke rehabilitation,focusing on critical aspects such as stimulation settings,target groups,biomarkers,and integration with rehabilitation interventions.展开更多
BACKGROUND Trichotillomania is a challenging to treat psychiatric disorder,with limited evidence for pharmacotherapy.Treatment typically involves medication,cognitive behavioral therapy,and behavioral interventions.Re...BACKGROUND Trichotillomania is a challenging to treat psychiatric disorder,with limited evidence for pharmacotherapy.Treatment typically involves medication,cognitive behavioral therapy,and behavioral interventions.Recently,transcranial magnetic stimulation(TMS)has emerged as a potential treatment strategy.AIM To assess the role of TMS in treating trichotillomania.METHODS A systematic search using specific terms was done in PubMed and Scopus databases for articles published until May 17,2024,related to trichotillomania and TMS.The search included randomized controlled trials,open-label studies,case series,case reports,and retrospective chart reviews,following the Preferred Items for Systematic Reviews and Meta-Analysis guideline.RESULTS We identified 32 articles(6 in PubMed and 26 in Scopus).After removing duplicates and articles that did not meet the selection criteria,we conducted a final analysis of four articles.These included one retrospective study,two case series,and one case study,with a total of 22 patients diagnosed with trichotillomania enrolled across all four studies.The brain areas targeted were the supplementary motor area(SMA),pre-SMA,and left dorsolateral prefrontal cortex.The studies reported an improvement in the severity of symptoms of trichotillomania in the majority of patients with negligible side effects.Nevertheless,it is important to note that the existing studies are mostly of low to moderate quality.CONCLUSION Early evidence suggests repetitive TMS and accelerated continuous theta burst stimulation can help treat trichotillomania adjunctively to other treatments.展开更多
Transcranial temporal interference stimulation(tTIS)is a novel non-invasive neuromodulation technique with the potential to precisely target deep brain structures.This study explores the neural and behavioral effects ...Transcranial temporal interference stimulation(tTIS)is a novel non-invasive neuromodulation technique with the potential to precisely target deep brain structures.This study explores the neural and behavioral effects of tTIS on the superior colliculus(SC),a region involved in eye movement control,in mice.Computational modeling revealed that tTIS delivers more focused stimulation to the SC than traditional transcranial alternating current stimulation.In vivo experiments,including Ca^(2+)signal recordings and eye movement tracking,showed that tTIS effectively modulates SC neural activity and induces eye movements.A significant correlation was found between stimulation frequency and saccade frequency,suggesting direct tTIS-induced modulation of SC activity.These results demonstrate the precision of tTIS in targeting deep brain regions and regulating eye movements,highlighting its potential for neuroscientific research and therapeutic applications.展开更多
BACKGROUND Depression has become a global public health problem.In recent years,transcranial magnetic stimulation(TMS)has gained considerable attention as a noninvasive treatment for depression.AIM To investigate the ...BACKGROUND Depression has become a global public health problem.In recent years,transcranial magnetic stimulation(TMS)has gained considerable attention as a noninvasive treatment for depression.AIM To investigate the research hotspots and trends in the field of TMS-based depression treatment from a bibliometric perspective.METHODS Using the Web of Science Core Collection,articles published between 2003 and 2022 on TMS-based depression treatment were retrieved from the science citation index expanded.The publication trends and research hotspots were analyzed using VOSviewer,CiteSpace,and the bibliometric online analysis platform.Regression analysis was performed using Microsoft Excel 2021 to predict publication growth trends.RESULTS We identified a total of 702 articles on TMS-based depression treatment with a predominance of clinical studies.Analysis of collaborative networks showed that the United States,the University of Toronto,and Daskalakis ZJ were identified as the most impactful country,institution,and researcher,respectively.In keyword burst analysis,it was found that theta burst stimulation(TBS),functional connectivity,and frequency were the most recent research hotspots.CONCLUSION TMS provides a novel therapeutic option for patients with treatment-resistant depression.Neuroimaging technology enables more precise TMS treatment,while the novel TMS modality,TBS,enhances both therapeutic efficacy and patient experience in TMS-based depression treatment.The integration of neuroimaging techniques with TBS represents a promising research direction for advancing TMS-based depression treatment.This study presents systematic information and recommendations to guide future research on TMS-based depression treatment.展开更多
Dear Editor,Transcranial Magnetic Stimulation(TMS)has emerged as a promising therapeutic tool for various neurological and psychiatric conditions[1-3].However,despite its potential benefits,TMS is not without its disc...Dear Editor,Transcranial Magnetic Stimulation(TMS)has emerged as a promising therapeutic tool for various neurological and psychiatric conditions[1-3].However,despite its potential benefits,TMS is not without its discomfort issues[4,5],which are mainly related to target location,stimulus intensity,and treatment duration.The discomfort associated with TMS arises from several factors,including the physical sensations experienced during the procedure and potential adverse effects on the scalp and surrounding tissues.展开更多
Acute stress disorder(ASD)is a transient psychiatric disorder that may arise subsequent to abrupt,extreme trauma exposure,and serves as a reliable indicator for the subsequent development of posttraumatic stress disor...Acute stress disorder(ASD)is a transient psychiatric disorder that may arise subsequent to abrupt,extreme trauma exposure,and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder(PTSD)(Bryant,2011;Battle,2013).It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks(not exceeding one month),manifesting symptoms of dissociation,re-experiencing,avoidance,and hyperarousal(Bielas et al.,2018).In the absence of efficacious and prompt intervention,ASD is linked to substantial morbidity and functional impairment(McLean et al.,2022).展开更多
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to...Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.展开更多
Background Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management,such as pig,sheep,bovine and other species.It helps synchronize ovulation or stimulate multiple o...Background Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management,such as pig,sheep,bovine and other species.It helps synchronize ovulation or stimulate multiple ovu-lations.However,a number of evidence indicated an unexpected decrease in pregnancy outcomes following ovarian stimulation.This study aimed to explore the underlying mechanism of the pregnancy defect and develop a practical rescue strategy.Results Compared with those in the control group,gilts that underwent ovarian stimulation showed a decrease in pregnancy rate,farrowing rate,and total number of piglets born.Stimulated gilts also showed an increase in estra-diol(E_(2))levels.The supraphysiologicalE_(2) level was correlated with the decrease in the number of piglets born.Furthermore,we found that high levels ofE_(2) impair uterine receptivity,as shown by the overproliferation of endo-metrial epithelial cells.In vitro mechanistic studies demonstrated that high levels ofE_(2) hyperactivate FGF-FGFR-ERK signaling cascade in the uterine endometrium,and in turn induces overproliferation of endometrial epithelial cells.Of note,N-acetyl-L-cysteine(NAC)supplementation effectively inhibits ERK hyperphosphorylation and ameliorates endometrial epithelial overproliferation.Importantly,in vivo experiments indicated that dietary NAC supplementa-tion,compared with ovarian stimulation group,improves the uterine receptivity in gilts,and significantly increases the pregnancy rate and total number of piglets born.Conclusions Ovarian stimulation-induced supraphysiological levels ofE_(2) impairs uterine receptivity by hyperactivat-ing FGF-FGFR-ERK signaling cascade,thereby reducing pregnancy rate and litter size.Supplementing NAC to a con-ventional diet for gilts ameliorates hyperactivated ERK signaling and improves uterine receptivity,thus rescuing adverse pregnancy outcomes following ovarian stimulation.展开更多
The vagus nerve plays a pivotal role in regulating blood pressure,making vagus nerve stimulation a promising therapy for refractory hypertension.Nevertheless,most current research on vagus nerve stimulation for hypert...The vagus nerve plays a pivotal role in regulating blood pressure,making vagus nerve stimulation a promising therapy for refractory hypertension.Nevertheless,most current research on vagus nerve stimulation for hypertension regulation employs rigid electrodes outside the nerve bundle,with limited exploration into the electrical stimulation paradigms.In this study,we employed the carbon nanotube yarn electrode,a flexible electrode,implanted in the left vagus nerve of rats to compare the modulatory effects of duty cycle and pulse width stimulation paradigms.Furthermore,we conducted a quantitative electrical stimulation experiment using the optimized duty cycle paradigm.The result showed that low-frequency stimulation yielded superior blood pressure regulation,whereas high-frequency stimulation resulted in apnea.In conclusion,intrafascicular vagus nerve stimulation with the duty-cycle paradigm demonstrated superior efficacy in reducing blood pressure compared to the pulse-width paradigm,with an optimal duty cycle identified at 20%.These findings offer valuable insights for optimizing vagus nerve stimulation protocols in the treatment of hypertension.展开更多
BACKGROUND There is no effective treatment for Alzheimer's disease(AD),and pharmacological treatment of AD in clinical settings is expensive and prolonged,resulting in a huge psychological and economic burden on t...BACKGROUND There is no effective treatment for Alzheimer's disease(AD),and pharmacological treatment of AD in clinical settings is expensive and prolonged,resulting in a huge psychological and economic burden on the patient's family and caregivers and society as a whole,AD is characterized by progressive,worsening cognitive impairment,and there are currently no drugs that can effectively reverse cognitive impairment.However,it is important to intervene early or delay cognitive impairment so that the condition can be delayed and,ultimately,the burden on patients and families can be reduced through maintenance treatment.It may be that non-pharmacological interventions such as cognitive stimulation therapy(CST)can help with cognitive dysfunction.AIM To provide a better treatment plan for AD patients and delay the deterioration of cognitive function,the effect of CST on cognitive function in AD was studied by Meta-analysis.METHODS Comprehensive search the Chinese and English databases were comprehensively searched by computer.Chinese databases:China Biomedical Literature Database(CBM),Wanfang Database,VIP Database,and China Periodicals Full-text Database(CNKI).The collection time limit is from July 21,2010 to July 21,2022 randomized controlled trials literature on the effects of CST on cognitive function in patients with AD.According to the inclusion and exclusion criteria,literature screening,data extraction,and quality evaluation were performed.Standardized mean difference(SMD)and 95%CI were used as evaluation criteria to evaluate the cognitive function of CST in AD patients.Sensitivity analysis and publication bias detection were performed on the results.Publication bias was assessed using funnel plots,and funnel plot symmetry was assessed with Eggr's test.RESULTS CST can not improve Mental State Examination Scale(MMSE)scores in AD patients.Meta-analysis of CST on MMSE scores showed that the heterogeneity was P=0.14,I2=35%.I2=35%<50%,and the Q test P>0.1,choose the random effect model to integrate statistics,get SMD=0.02,95%CI:-0.37,0.42,P>0.05.Meta-analysis of CST on AD Cognitive Functioning Assessment Scale scores showed that the heterogeneity was P=0.13,I2=36%.I2=36%<50 choose a fixed effect model to integrate statistics,get SMD=-0.01,95%CI:-0.40,0.39,P>0.05,the difference is not statistically significant.Meta-analysis of CST on the cognitive function indicators of patients showed that the heterogeneity was P=0.17,I2=31%.I2=31%<50%,the fixed effect model showed SMD=0.01,95%CI:-0.37,0.38,P>0.05,the difference was not statistically significant.CONCLUSION CST may not improve the cognitive function of AD patients,not improve the cognitive function of AD patients,not improve the ability of daily living,and not reduce mental behavior can improve the cognitive function of AD patients.展开更多
BACKGROUND Schizophrenia is a chronic psychiatric condition with complex symptomatology,including debilitating auditory hallucinations.Transcranial direct current stimulation(tDCS)has been explored as an adjunctive tr...BACKGROUND Schizophrenia is a chronic psychiatric condition with complex symptomatology,including debilitating auditory hallucinations.Transcranial direct current stimulation(tDCS)has been explored as an adjunctive treatment to alleviate such symptoms.AIM To evaluate the therapeutic efficacy of tDCS in schizophrenia.METHODS Adhering to PRISMA guidelines,we systematically searched PubMed,Embase,Web of Science,and the Cochrane Library on September 19,2023,for randomized controlled trials examining the efficacy of tDCS in schizophrenia,with no language or time restrictions.We included studies that compared tDCS with a control condition and reported clinically relevant outcomes.Data extraction and quality assessments were performed by independent evaluators using the Cochrane Collaboration's risk of bias tool.Statistical heterogeneity was evaluated,and a random-effects model was applied due to moderate heterogeneity(I2=41.3%).RESULTS Nine studies comprising 425 participants(tDCS group:219,control group:206)were included.The meta-analysis demonstrated a significant reduction in auditory hallucination scores following tDCS treatment(weighted mean difference:-2.18,95%confidence interval:-4.0 to-0.29,P<0.01).Sensitivity analysis confirmed the robustness of the results,with no significant influence from individual studies.Additionally,publication bias was not detected,supporting the reliability and generalizability of the findings.These results underscore the efficacy of tDCS as a therapeutic intervention for auditory hallucinations in schizophrenia.CONCLUSION tDCS significantly reduces auditory hallucinations in schizophrenia,suggesting its potential as an effective adjunctive treatment for managing this disabling symptom.The findings highlight the practical significance of tDCS in clinical settings,particularly for patients with treatment-resistant auditory hallucinations.展开更多
To the editor:Social communication impairment(SCI)is a core symptom of autism spectrum disorder(ASD),and evidence-based interventions targeting this domain remain limited.In the past decade,repetitive transcranial mag...To the editor:Social communication impairment(SCI)is a core symptom of autism spectrum disorder(ASD),and evidence-based interventions targeting this domain remain limited.In the past decade,repetitive transcranial magnetic stimulation(rTMS),one of the most commonly applied non-invasive neurostimulation techniques,has shown efficacy in treating neuropsychiatric disorders,such as depression.展开更多
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金supported by on Association of British Neurologists Fellowship(Stroke Association/Berkeley Foundation)supported by the NIHR Sheffield Biomedical Research Centre。
文摘Vagus nerve stimulation(VNS)and stroke:Stroke is the second leading cause of death and the third leading cause of disability worldwide(Baig et al.,2023).There have been significant paradigm shifts in the management of acute ischemic stroke through mechanical thrombectomy.In chronic ischemic stroke,invasive VNS paired with rehabilitation is associated with a significant increase in upper limb motor recovery and is FDA-approved(Baig et al.,2023).There are no treatments of similar efficacy in acute intracerebral hemorrhage(ICH)where several promising trials,e.g.,TICH-2,STOP-AUST,and TRAIGE did not show improvements in functional outcomes(Puy et al.,2023).
基金Supported by Shanghai 2020“Science and Technology Innovation Action Plan”Medical Innovation Research Special Program:20Y21902800Shanghai Municipal Health Commission Shanghai Three-Year Action Plan to Further Accelerate the Development of Traditional Chinese Medicine Inheritance and Innovation:ZY(2021-2023)−0302)+1 种基金Shanghai Key Specialty(Acupuncture)Construction Project:shslczdzk04701Shanghai 2024"Science and Technology Innovation Action Plan"star cultivation(Sail special):24YF2740600.
文摘Transcutaneous electrical acupoint stimulation(TEAS)is a kind of physical therapy that use electric cur-rent through the electrodes placed on the surface of acupoints to produce clinical effects in the human body,which is characterized by less adverse reaction and convenient operation.It has been widely used in the treatment of various diseases.This review introduces six major clinical applications of TEAS,named analgesia,regulation of gastrointestinal function,improvement of reproductive function,enhancement of cognitive function,promotion of limb function recovery and relief of fatigue.Besides,TEAS has been ap-plied to the treatment of other chronic diseases such as hypertension and diabetes,achieving satisfactory clinical effects.However,two crucial challenges are encountered in the development of TEAS.One is the lack of standardization in the selection of parameters such as waveform,frequency,intensity and stimula-tion duration.The other is the limitation on the flexibility in the acupoint selection.This review analyzes key issues that need to be addressed in the current clinical application of TEAS,such as the selection of parameters and acupoints,and this review provides a certain reference value for optimizing regimens of TEAS and promoting its development and application.
基金supported by a grant from Ministry of Science,Technological Development and Innovation,Serbia,No.451-03-68/2022-14/200178(to NN)University of Defence,No.MFVMA/02/22-24(to MN)。
文摘An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.
文摘Objective To evaluate the association of GGN repeat polymorphism of androgen receptor(AR)with ovarian reserve and ovarian response in controlled ovarian stimulation(COS).Methods This genetic association study was conducted among a total of 361 women aged≤40 years with basal FSH≤12 U/L undergoing the GnRH-agonist long protocol for COS in a university affiliated IVF center.GGN repeat in the AR gene was analyzed with Sanger sequencing.The primary endpoint was the number of antral follicle counts(AFCs),and the secondary endpoints were stimulation days,total dose of gonadotropin(Gn)used,total number of retrieved oocytes,ovarian sensitivity index,and follicular output rate.Results The GGN repeat in exon 1 of the AR gene ranged from 13 to 24,and the median repeat length was 22.Based on the genotypes(S for GGN repeats<22,L for GGN repeats≥22),the patients were divided into 3 groups:SS,SL,and LL.Generalized regression analysis indicated that the number of AFCs in group SS was significantly lower than those in group SL(adjusted β=1.8,95%CI:0.2-3.4,P=0.024)and group LL(adjusted β=1.5,95%CI:0.2-2.7,P=0.021).No significant difference was observed in the number of AFCs between group SL and group LL(P>0.05).Generalized regression analysis indicated no significant differences in ovarian stimulation parameters among the 3 groups,either before or after adjusting for confounding factors(P>0.05).Conclusion GGN repeat length on the AR gene is associated with AFC but not with ovarian response in Chinese women,indicating that AR gene polymorphisms may affect ovarian reserve.
基金supported by the Hefei Comprehensive National Science Center Hefei Brain Project(to KW)the National Natural Science Foundation of China,Nos.31970979(to KW),82101498(to XW)the STI2030-Major Projects,No.2021ZD0201800(to PH).
文摘Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.
文摘Background: The use of assisted reproductive technique (ART) is becoming more common in infertility. During ART most patients undergo ovarian stimulation. In this study we study the correlation between ovarian reserve markers: Anti-Mullerian hormone (AMH) and antral follicle count (AFC), and the response to ovarian stimulation at in vitro fertilization (IVF) centres in Douala Cameroon. Methods: This was a hospital based cross-sectional sectional analytic study carried out over a period of 3 years, 4 months at Clinique de l’Aéroport, Clinique Odyssée and Clinique Urogyn. Inclusion criteria were: Female partners of infertile couples undergoing ovarian stimulation for an in vitro fertilization cycle, patients who had both ovaries and had done either AMH, AFC or both before ovarian stimulation. Patients were divided into three groups based on the number of oocytes retrieved: low ovarian response for ≤3 oocytes, normal ovarian response for 4 - 15 oocytes and high ovarian response for >15 oocytes. Data obtained was analyzed by SPSS version 25.0. Results: The ages of participants ranged from 20 - 4 7 years, with a mean age of 34.11 ± 5.11 years. Most of them had secondary infertility (57.9%). The GnRH antagonist protocol was mainly used, and ovulation was triggered using HCG predominantly. On Multivariate analysis, age and history of PCOS were significantly associated with ovarian response in the low and high ovarian response groups, respectively. Conclusion: AMH has a better predictive value than AFC, however, it is less sensitive but more specific than AFC.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
基金an Association of British Neurologists Doctoral Research Fellowship co-funded by the Berkeley Foundation and the Stroke Associationsupported by a NIHR Academic Clinical Lectureship in Neurology CL-2020-04-004 NIHR+3 种基金supported by the NIHR Sheffield Biomedical Research Centre(BRC)NIHR Sheffield Clinical Research Facility(CRF)supported by NIHR EME Project Grant NIHR133169funded by Alzheimer’s Research UK Senior Research Fellowship(ARUK-SRF2017B-1)。
文摘Stroke remains a leading cause of long-term disability worldwide.There is an unmet need for neuromodulatory therapies that can mitigate against neurovascular injury and potentially promote neurological recovery.Transcutaneous vagus nerve stimulation has been demonstrated to show potential therapeutic effects in both acute and chronic stroke.However,previously published research has only investigated a narrow range of stimulation settings and indications.In this review,we detail the ongoing studies of transcutaneous vagus nerve stimulation in stroke through systematic searches of registered clinical trials.We summarize the upcoming clinical trials of transcutaneous vagus nerve stimulation in stroke,highlighting their indications,parameter settings,scope,and limitations.We further explore the challenges and barriers associated with the implementation of transcutaneous vagus nerve stimulation in acute stroke and stroke rehabilitation,focusing on critical aspects such as stimulation settings,target groups,biomarkers,and integration with rehabilitation interventions.
文摘BACKGROUND Trichotillomania is a challenging to treat psychiatric disorder,with limited evidence for pharmacotherapy.Treatment typically involves medication,cognitive behavioral therapy,and behavioral interventions.Recently,transcranial magnetic stimulation(TMS)has emerged as a potential treatment strategy.AIM To assess the role of TMS in treating trichotillomania.METHODS A systematic search using specific terms was done in PubMed and Scopus databases for articles published until May 17,2024,related to trichotillomania and TMS.The search included randomized controlled trials,open-label studies,case series,case reports,and retrospective chart reviews,following the Preferred Items for Systematic Reviews and Meta-Analysis guideline.RESULTS We identified 32 articles(6 in PubMed and 26 in Scopus).After removing duplicates and articles that did not meet the selection criteria,we conducted a final analysis of four articles.These included one retrospective study,two case series,and one case study,with a total of 22 patients diagnosed with trichotillomania enrolled across all four studies.The brain areas targeted were the supplementary motor area(SMA),pre-SMA,and left dorsolateral prefrontal cortex.The studies reported an improvement in the severity of symptoms of trichotillomania in the majority of patients with negligible side effects.Nevertheless,it is important to note that the existing studies are mostly of low to moderate quality.CONCLUSION Early evidence suggests repetitive TMS and accelerated continuous theta burst stimulation can help treat trichotillomania adjunctively to other treatments.
基金supported by the National Natural Science Foundation of China(T2394533,32222036,82030038,and 62472206)the National Key Research and Development Program of China(2018YFA0701400)the Shenzhen Science and Technology Innovation Committee(2022410129,KJZD20230923115221044,and KCXFZ20201221173400001).
文摘Transcranial temporal interference stimulation(tTIS)is a novel non-invasive neuromodulation technique with the potential to precisely target deep brain structures.This study explores the neural and behavioral effects of tTIS on the superior colliculus(SC),a region involved in eye movement control,in mice.Computational modeling revealed that tTIS delivers more focused stimulation to the SC than traditional transcranial alternating current stimulation.In vivo experiments,including Ca^(2+)signal recordings and eye movement tracking,showed that tTIS effectively modulates SC neural activity and induces eye movements.A significant correlation was found between stimulation frequency and saccade frequency,suggesting direct tTIS-induced modulation of SC activity.These results demonstrate the precision of tTIS in targeting deep brain regions and regulating eye movements,highlighting its potential for neuroscientific research and therapeutic applications.
基金Supported by the National Natural Science Foundation of China,No.82270916,No.81800748 and No.82371478the Third Affiliated Hospital of Anhui Medical University Basic and Clinical Collaborative Research Enhancement Program Cultivation Special Funding Project,No.2022sfy009.
文摘BACKGROUND Depression has become a global public health problem.In recent years,transcranial magnetic stimulation(TMS)has gained considerable attention as a noninvasive treatment for depression.AIM To investigate the research hotspots and trends in the field of TMS-based depression treatment from a bibliometric perspective.METHODS Using the Web of Science Core Collection,articles published between 2003 and 2022 on TMS-based depression treatment were retrieved from the science citation index expanded.The publication trends and research hotspots were analyzed using VOSviewer,CiteSpace,and the bibliometric online analysis platform.Regression analysis was performed using Microsoft Excel 2021 to predict publication growth trends.RESULTS We identified a total of 702 articles on TMS-based depression treatment with a predominance of clinical studies.Analysis of collaborative networks showed that the United States,the University of Toronto,and Daskalakis ZJ were identified as the most impactful country,institution,and researcher,respectively.In keyword burst analysis,it was found that theta burst stimulation(TBS),functional connectivity,and frequency were the most recent research hotspots.CONCLUSION TMS provides a novel therapeutic option for patients with treatment-resistant depression.Neuroimaging technology enables more precise TMS treatment,while the novel TMS modality,TBS,enhances both therapeutic efficacy and patient experience in TMS-based depression treatment.The integration of neuroimaging techniques with TBS represents a promising research direction for advancing TMS-based depression treatment.This study presents systematic information and recommendations to guide future research on TMS-based depression treatment.
基金supported by STI2030-Major Projects(2021ZD0200200)the Key Collaborative Research Program of the Alliance of International Science Organizations(ANSO-CR-KP-2022-10)+1 种基金the Natural Science Foundation of China(82151307,82202253,and 31620103905)the Science Frontier Program of the Chinese Academy of Sciences(QYZDJ-SSW-SMC019).
文摘Dear Editor,Transcranial Magnetic Stimulation(TMS)has emerged as a promising therapeutic tool for various neurological and psychiatric conditions[1-3].However,despite its potential benefits,TMS is not without its discomfort issues[4,5],which are mainly related to target location,stimulus intensity,and treatment duration.The discomfort associated with TMS arises from several factors,including the physical sensations experienced during the procedure and potential adverse effects on the scalp and surrounding tissues.
基金supported by the National Natural Science Foundation of China(No.82271562)the Key Research and Development Program of Zhejiang Province of China(No.2023C03077).
文摘Acute stress disorder(ASD)is a transient psychiatric disorder that may arise subsequent to abrupt,extreme trauma exposure,and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder(PTSD)(Bryant,2011;Battle,2013).It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks(not exceeding one month),manifesting symptoms of dissociation,re-experiencing,avoidance,and hyperarousal(Bielas et al.,2018).In the absence of efficacious and prompt intervention,ASD is linked to substantial morbidity and functional impairment(McLean et al.,2022).
基金supported by the Fundamental Research Funds for the Central Universities,Nos.G2021KY05107,G2021KY05101the National Natural Science Foundation of China,Nos.32071316,32211530049+1 种基金the Natural Science Foundation of Shaanxi Province,No.2022-JM482the Education and Teaching Reform Funds for the Central Universities,No.23GZ230102(all to LL and HH).
文摘Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke.
基金National Natural Science Foundation of China(31930103)National Center of Technology Innovation for Pigs(NCTIP-XD/B03)+2 种基金Ningbo Major Science and Technology Project(2021Z112)National Key R&D Program(2022YFD1300303)Beijing Innovation Consortium of Livestock Research System BAIC05-2024.
文摘Background Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management,such as pig,sheep,bovine and other species.It helps synchronize ovulation or stimulate multiple ovu-lations.However,a number of evidence indicated an unexpected decrease in pregnancy outcomes following ovarian stimulation.This study aimed to explore the underlying mechanism of the pregnancy defect and develop a practical rescue strategy.Results Compared with those in the control group,gilts that underwent ovarian stimulation showed a decrease in pregnancy rate,farrowing rate,and total number of piglets born.Stimulated gilts also showed an increase in estra-diol(E_(2))levels.The supraphysiologicalE_(2) level was correlated with the decrease in the number of piglets born.Furthermore,we found that high levels ofE_(2) impair uterine receptivity,as shown by the overproliferation of endo-metrial epithelial cells.In vitro mechanistic studies demonstrated that high levels ofE_(2) hyperactivate FGF-FGFR-ERK signaling cascade in the uterine endometrium,and in turn induces overproliferation of endometrial epithelial cells.Of note,N-acetyl-L-cysteine(NAC)supplementation effectively inhibits ERK hyperphosphorylation and ameliorates endometrial epithelial overproliferation.Importantly,in vivo experiments indicated that dietary NAC supplementa-tion,compared with ovarian stimulation group,improves the uterine receptivity in gilts,and significantly increases the pregnancy rate and total number of piglets born.Conclusions Ovarian stimulation-induced supraphysiological levels ofE_(2) impairs uterine receptivity by hyperactivat-ing FGF-FGFR-ERK signaling cascade,thereby reducing pregnancy rate and litter size.Supplementing NAC to a con-ventional diet for gilts ameliorates hyperactivated ERK signaling and improves uterine receptivity,thus rescuing adverse pregnancy outcomes following ovarian stimulation.
基金the Science and Technology Project of the State Grid Shanghai Municipal Electric Power Company(No.52094022000U)the National Key Research and Development Program of China(No.2022ZD0208601)the National Natural Science Foundation of China(No.62176158)。
文摘The vagus nerve plays a pivotal role in regulating blood pressure,making vagus nerve stimulation a promising therapy for refractory hypertension.Nevertheless,most current research on vagus nerve stimulation for hypertension regulation employs rigid electrodes outside the nerve bundle,with limited exploration into the electrical stimulation paradigms.In this study,we employed the carbon nanotube yarn electrode,a flexible electrode,implanted in the left vagus nerve of rats to compare the modulatory effects of duty cycle and pulse width stimulation paradigms.Furthermore,we conducted a quantitative electrical stimulation experiment using the optimized duty cycle paradigm.The result showed that low-frequency stimulation yielded superior blood pressure regulation,whereas high-frequency stimulation resulted in apnea.In conclusion,intrafascicular vagus nerve stimulation with the duty-cycle paradigm demonstrated superior efficacy in reducing blood pressure compared to the pulse-width paradigm,with an optimal duty cycle identified at 20%.These findings offer valuable insights for optimizing vagus nerve stimulation protocols in the treatment of hypertension.
基金Supported by Liaoning Provincial Natural Science Foundation,No.2022-MS-430Shenyang Science and Technology Bureau Project,No.22-321-33-56Shenyang Municipal Health Commission Project,No.2022006.
文摘BACKGROUND There is no effective treatment for Alzheimer's disease(AD),and pharmacological treatment of AD in clinical settings is expensive and prolonged,resulting in a huge psychological and economic burden on the patient's family and caregivers and society as a whole,AD is characterized by progressive,worsening cognitive impairment,and there are currently no drugs that can effectively reverse cognitive impairment.However,it is important to intervene early or delay cognitive impairment so that the condition can be delayed and,ultimately,the burden on patients and families can be reduced through maintenance treatment.It may be that non-pharmacological interventions such as cognitive stimulation therapy(CST)can help with cognitive dysfunction.AIM To provide a better treatment plan for AD patients and delay the deterioration of cognitive function,the effect of CST on cognitive function in AD was studied by Meta-analysis.METHODS Comprehensive search the Chinese and English databases were comprehensively searched by computer.Chinese databases:China Biomedical Literature Database(CBM),Wanfang Database,VIP Database,and China Periodicals Full-text Database(CNKI).The collection time limit is from July 21,2010 to July 21,2022 randomized controlled trials literature on the effects of CST on cognitive function in patients with AD.According to the inclusion and exclusion criteria,literature screening,data extraction,and quality evaluation were performed.Standardized mean difference(SMD)and 95%CI were used as evaluation criteria to evaluate the cognitive function of CST in AD patients.Sensitivity analysis and publication bias detection were performed on the results.Publication bias was assessed using funnel plots,and funnel plot symmetry was assessed with Eggr's test.RESULTS CST can not improve Mental State Examination Scale(MMSE)scores in AD patients.Meta-analysis of CST on MMSE scores showed that the heterogeneity was P=0.14,I2=35%.I2=35%<50%,and the Q test P>0.1,choose the random effect model to integrate statistics,get SMD=0.02,95%CI:-0.37,0.42,P>0.05.Meta-analysis of CST on AD Cognitive Functioning Assessment Scale scores showed that the heterogeneity was P=0.13,I2=36%.I2=36%<50 choose a fixed effect model to integrate statistics,get SMD=-0.01,95%CI:-0.40,0.39,P>0.05,the difference is not statistically significant.Meta-analysis of CST on the cognitive function indicators of patients showed that the heterogeneity was P=0.17,I2=31%.I2=31%<50%,the fixed effect model showed SMD=0.01,95%CI:-0.37,0.38,P>0.05,the difference was not statistically significant.CONCLUSION CST may not improve the cognitive function of AD patients,not improve the cognitive function of AD patients,not improve the ability of daily living,and not reduce mental behavior can improve the cognitive function of AD patients.
文摘BACKGROUND Schizophrenia is a chronic psychiatric condition with complex symptomatology,including debilitating auditory hallucinations.Transcranial direct current stimulation(tDCS)has been explored as an adjunctive treatment to alleviate such symptoms.AIM To evaluate the therapeutic efficacy of tDCS in schizophrenia.METHODS Adhering to PRISMA guidelines,we systematically searched PubMed,Embase,Web of Science,and the Cochrane Library on September 19,2023,for randomized controlled trials examining the efficacy of tDCS in schizophrenia,with no language or time restrictions.We included studies that compared tDCS with a control condition and reported clinically relevant outcomes.Data extraction and quality assessments were performed by independent evaluators using the Cochrane Collaboration's risk of bias tool.Statistical heterogeneity was evaluated,and a random-effects model was applied due to moderate heterogeneity(I2=41.3%).RESULTS Nine studies comprising 425 participants(tDCS group:219,control group:206)were included.The meta-analysis demonstrated a significant reduction in auditory hallucination scores following tDCS treatment(weighted mean difference:-2.18,95%confidence interval:-4.0 to-0.29,P<0.01).Sensitivity analysis confirmed the robustness of the results,with no significant influence from individual studies.Additionally,publication bias was not detected,supporting the reliability and generalizability of the findings.These results underscore the efficacy of tDCS as a therapeutic intervention for auditory hallucinations in schizophrenia.CONCLUSION tDCS significantly reduces auditory hallucinations in schizophrenia,suggesting its potential as an effective adjunctive treatment for managing this disabling symptom.The findings highlight the practical significance of tDCS in clinical settings,particularly for patients with treatment-resistant auditory hallucinations.
基金supported by grants from the National Natural Science Foundation of China(82125032,81930095,82204048 and 81761128035)the Science and Technology Commission of Shanghai Municipality(19410713500 and 2018SHZDZX01)+3 种基金the Foundation of Shanghai Municipal Commission of Health and Family Planning(GWV-10.1-XK07,2020CXJQ01 and 2018YJRC03)the Shanghai Clinical Key Subject Construction Project(shslczdzk02902)the Innovative Research Team of High-Level Local Universities in Shanghai(SHSMU-ZDCX20211100)the Guangdong Key Project(2018B030335001).
文摘To the editor:Social communication impairment(SCI)is a core symptom of autism spectrum disorder(ASD),and evidence-based interventions targeting this domain remain limited.In the past decade,repetitive transcranial magnetic stimulation(rTMS),one of the most commonly applied non-invasive neurostimulation techniques,has shown efficacy in treating neuropsychiatric disorders,such as depression.