[FePt/Ag]n multilayers were deposited on glass substrates by RF magnetron sputtering and ex situ annealed at 550℃ for 30 min. The effects of inserted Ag layer thickness and the number of bilayer repetitions (n) on ...[FePt/Ag]n multilayers were deposited on glass substrates by RF magnetron sputtering and ex situ annealed at 550℃ for 30 min. The effects of inserted Ag layer thickness and the number of bilayer repetitions (n) on the structure and magnetic properties of the multilayers were investigated. It was found that the difference between in-plane and out-of-plane coercivities varied with an increase of inserted Ag layer thickness in the [FePt 2 nm/Ag x nm]10 multilayers. The ratio of out-of-plane coercivity to in-plane coercivity reached the maximum value with the Ag layer thickness of 5 nm, indicating that the Ag layer thickness plays an important role in obtaining perpendicular orientation. For the [FePt 2 nm/Ag 5 um]n multilayers, perpendicular orientation is also influenced by n. The maximum value of the ratio of out-of-plane coercivity to in-plane coercivity appeared when n was given as 8. It was found that the [FePt 2 nm/Ag 5 nm]8 had a high perpendicular coercivity of 520 kA/m and a low in-plane one of 88 kA/m, which shows a strong perpendicular anisotropy.展开更多
The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing...The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.展开更多
Ni-Fe/Cu/Co/Cu multilayered nanowire arrays were electrodeposited into anodic aluminum oxide template by using dual-bath method at room temperature. Scanning electron microscopy and transmission electron microscopy we...Ni-Fe/Cu/Co/Cu multilayered nanowire arrays were electrodeposited into anodic aluminum oxide template by using dual-bath method at room temperature. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology and structure of the multilayered nanowire arrays. Vibrating sample magnetometer and physical property measurement system were used to measure their magnetic and giant magnetoresistance (GMR) properties. The effect of sub-layer thickness on the magnetic and GMR properties was investigated. The results indicate that magnetic properties of electmdeposited nanowires are not affected obviously by Cu layer thickness, while magnetic layers (Ni-Fe and Co layers) have significant influence. In addition, GMR ratio presents an oscillatory behavior as Cu layer thickness changes. The magnetic and GMR properties of the multilayered nanowire arrays are optimum at room temperature for the material structure of Ni-Fe (25 nm)/Cu (15 nm)/Co (25 nm)/Cu (15 nm) with 30 deposition cycles.展开更多
The deformation gradients in multilayered hot roll-bonded composite materials incorporating two dissimilar face-centered cubic metals, i.e., brass and Cu, were investigated by characterizing the deformation microstruc...The deformation gradients in multilayered hot roll-bonded composite materials incorporating two dissimilar face-centered cubic metals, i.e., brass and Cu, were investigated by characterizing the deformation microstructure, hardness and texture at different thickness positions of the composites. For the constitutive metals, the center part of each metal sheet forms the substructure containing coarse grains, while the ultrafine grains and significant shear banding form in the outer part. As deformation increases, the cross-interface shear occurs in the Cu sheet of the composites. Then, grain fragmentation, shear banding and dynamic recovery become the main factors that influence hardness of the metal. Moreover, in the co-deformed composites, the interface between brass and Cu plays a role in texture developments of the individual metals.展开更多
The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up...The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy (SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.展开更多
FePt (50 nm) and [FePt(a nm)/MgO(b nm)5/glass (a=1, 2, 3; b=1, 2, 3) films were prepared by radio frequency (RF) magnetron sputtering technique, and then were annealed at 600℃ for 30 min. The effect of MgO ...FePt (50 nm) and [FePt(a nm)/MgO(b nm)5/glass (a=1, 2, 3; b=1, 2, 3) films were prepared by radio frequency (RF) magnetron sputtering technique, and then were annealed at 600℃ for 30 min. The effect of MgO layer thickness on the structures and magnetic properties of the FePt/MgO multilayers was investigated. The coercivities and inter-grain interactions of the FePt/MgO films were decreased, yet the degree of (001) texturing drastically increased with the increase in MgO layer thickness when the FePt layer thickness was fixed. Thus, the FePt/MgO films with appropriate coercivities, high perpendicular anisotropy, and weak intergrain interactions were obtained by controlling the MgO layer thickness. Overall, these results indicate that the FePt/MgO nanostructured films are promising candidates for future high-density perpendicular recording media.展开更多
Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnet...Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.展开更多
Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are char...Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are characterized by scanning electron microscopy and Doppler broadening positron annihilation spectroscopy. The results show that plenty of point defects can be produced by introducing He during the growth of the multilayer nanofilms. With the increasing natural storage time, He located in the near surface of the Cu//W multilayer nanofilm at room temperature could be released gradually and induce the segregation of He-related defects due to the diffusion of He and defects. However, more He in the deep region spread along the interface of the Cu/W multilayer nanofilm. Meanwhile, the layer interfaces can still maintain their stability.展开更多
GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1....GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by anneahng into account.展开更多
We compare the electrical, optical, and surface properties of the PEDOT:PSS/Cu nanowires (Cu NWs)/PEDOT: PSS (PCP) multilayer for organic solar cells. It is demonstrated that the electrical and optical propertie...We compare the electrical, optical, and surface properties of the PEDOT:PSS/Cu nanowires (Cu NWs)/PEDOT: PSS (PCP) multilayer for organic solar cells. It is demonstrated that the electrical and optical properties of the PEDOT could be improved by the insertion of a Cu NW layer due to its very low resistivity and surface morphology. The organic bulk heterojunction solar cell fabricated on the multil^yer exhibits a higher power conversion ef^ciency than devices based on the PEDOT:PSS or PEDOT:PSS/Cu NWs layer. Moreover, the PCP multilayer can improve cell-performances such as a fill factor and the internal resistance in the device due to horizontally well-aligned Cu NWs. The results suggest that the PCP multilayer is a promising low-cost and low-temperature processing buffer layer candidate for low-cost organic photovoltaics.展开更多
The magnetic properties of Ni/Cu multilayers, prepared by the electron beam evaporation method under ultra high vacuum conditions, have been systematically studied by magnetic measurements. The temperature dependence ...The magnetic properties of Ni/Cu multilayers, prepared by the electron beam evaporation method under ultra high vacuum conditions, have been systematically studied by magnetic measurements. The temperature dependence of the spontaneous magnetization M (T) is well described by a T3/2 law. A spin wave theory has been used to explain the magnetization versus temperature. Based on this theory, the approximate values for the exchange interactions have been obtained.展开更多
Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The r...Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAl down to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu-Al monolithic thin films. The strain rate sensitivity (SRS, m), however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu-Al nanolayers dominated at hAl≤ 20 nm, while the crystalline Al nanolayers dominated at hAl 〉 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAFdependent hardness and SRS were quanti- tatively modeled in light of the strengthening mechanisms at different length scales.展开更多
基金This work is financially supported by the National Natural Science Foundation of China (No. 10574085) Natural Science Foundation ofShanxi Province, China (No. 20041032).
文摘[FePt/Ag]n multilayers were deposited on glass substrates by RF magnetron sputtering and ex situ annealed at 550℃ for 30 min. The effects of inserted Ag layer thickness and the number of bilayer repetitions (n) on the structure and magnetic properties of the multilayers were investigated. It was found that the difference between in-plane and out-of-plane coercivities varied with an increase of inserted Ag layer thickness in the [FePt 2 nm/Ag x nm]10 multilayers. The ratio of out-of-plane coercivity to in-plane coercivity reached the maximum value with the Ag layer thickness of 5 nm, indicating that the Ag layer thickness plays an important role in obtaining perpendicular orientation. For the [FePt 2 nm/Ag 5 um]n multilayers, perpendicular orientation is also influenced by n. The maximum value of the ratio of out-of-plane coercivity to in-plane coercivity appeared when n was given as 8. It was found that the [FePt 2 nm/Ag 5 nm]8 had a high perpendicular coercivity of 520 kA/m and a low in-plane one of 88 kA/m, which shows a strong perpendicular anisotropy.
基金supported by the National Natural Science Foundation of China(No.60571010)Natural Science Foundation of Hubei province.
文摘The Fe/Pt multilayer films with different structures were deposited by RF magnetron sputtering on glass substrates, and the L10-FePt films were obtained after the asdeposited samples were subjected to vacuum annealing at various temperatures. Results show that the Fe/Pt multilayer structure can effectively reduce the ordering temperature of FePt film, and the in-plane coercivity of [Fe (5.2 nm)/Pt (5.2 nm)]7 multilayers can reach 161.2 kA/m after annealed at 350℃ for 30 min. When Fe and Pt layer thickness is equal, the coercivity of the film is the largest. On the other hand, the different Fe-Pt crystalline phases such as Fe3Pt and FePt3 phases are formed after annealing when the thickness ratio of Fe/Pt deviates from 1 after annealing. When Fe and Pt have the same thickness, the thinner single layer gets the lower ordering temperature and the larger coercivity.
基金Supported by the Natural Science Foundation of Tianjin,China(08JCZDJC17400)
文摘Ni-Fe/Cu/Co/Cu multilayered nanowire arrays were electrodeposited into anodic aluminum oxide template by using dual-bath method at room temperature. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology and structure of the multilayered nanowire arrays. Vibrating sample magnetometer and physical property measurement system were used to measure their magnetic and giant magnetoresistance (GMR) properties. The effect of sub-layer thickness on the magnetic and GMR properties was investigated. The results indicate that magnetic properties of electmdeposited nanowires are not affected obviously by Cu layer thickness, while magnetic layers (Ni-Fe and Co layers) have significant influence. In addition, GMR ratio presents an oscillatory behavior as Cu layer thickness changes. The magnetic and GMR properties of the multilayered nanowire arrays are optimum at room temperature for the material structure of Ni-Fe (25 nm)/Cu (15 nm)/Co (25 nm)/Cu (15 nm) with 30 deposition cycles.
基金financially supported by the National Natural Science Foundation of China(Nos.51202256 and51201028)the Fundamental Research Funds for the Central Universities(No.N130510001)the Program for New Century Excellent Talents in University(No.NCET-13-0104)
文摘The deformation gradients in multilayered hot roll-bonded composite materials incorporating two dissimilar face-centered cubic metals, i.e., brass and Cu, were investigated by characterizing the deformation microstructure, hardness and texture at different thickness positions of the composites. For the constitutive metals, the center part of each metal sheet forms the substructure containing coarse grains, while the ultrafine grains and significant shear banding form in the outer part. As deformation increases, the cross-interface shear occurs in the Cu sheet of the composites. Then, grain fragmentation, shear banding and dynamic recovery become the main factors that influence hardness of the metal. Moreover, in the co-deformed composites, the interface between brass and Cu plays a role in texture developments of the individual metals.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572118 and 11372103)the Hunan Provincial Science Fund for Distinguished Young Scholars,China(Grant No.2015JJ1006)the National Key Research and Development Program of China(Grant No.2016YFB0700300)
文摘The plastic deformation mechanism of Cu/Ag multilayers is investigated by molecular dynamics (MD) simulation in a nanoindentation process. The result shows that due to the interface barrier, the dislocations pile-up at the interface and then the plastic deformation of the Ag matrix occurs due to the nucleation and emission of dislocations from the interface and the dislocation propagation through the interface. In addition, it is found that the incipient plastic deformation of Cu/Ag multilayers is postponed, compared with that of bulk single-crystal Cu. The plastic deformation of Cu/Ag multilayers is affected by the lattice mismatch more than by the difference in stacking fault energy (SFE) between Cu and Ag. The dislocation pile-up at the interface is determined by the obstruction of the mismatch dislocation network and the attraction of the image force. Furthermore, this work provides a basis for further understanding and tailoring metal multilayers with good mechanical properties, which may facilitate the design and development of multilayer materials with low cost production strategies.
基金This work was financially supported by the National Natural Science Foundation of China (No.10574085)the Opening Foundation of the Key Laboratory of Shanxi Province (200503010)the Key Project of the Ministry of Education of China (No.207020).
文摘FePt (50 nm) and [FePt(a nm)/MgO(b nm)5/glass (a=1, 2, 3; b=1, 2, 3) films were prepared by radio frequency (RF) magnetron sputtering technique, and then were annealed at 600℃ for 30 min. The effect of MgO layer thickness on the structures and magnetic properties of the FePt/MgO multilayers was investigated. The coercivities and inter-grain interactions of the FePt/MgO films were decreased, yet the degree of (001) texturing drastically increased with the increase in MgO layer thickness when the FePt layer thickness was fixed. Thus, the FePt/MgO films with appropriate coercivities, high perpendicular anisotropy, and weak intergrain interactions were obtained by controlling the MgO layer thickness. Overall, these results indicate that the FePt/MgO nanostructured films are promising candidates for future high-density perpendicular recording media.
基金supported by the National Natural Science Foundation of China (Grant Nos 10404011 and 50401018)the Program for New Century Excellent Talents (NCET) in University
文摘Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275132,51171124 and 11505121the International Science and Technology Cooperation Program of China under Grant No 2014DFR50710the Scientific and Technical Supporting Programs Funded by the Science and Technology Department of Sichuan Province under Grant No 2014GZ0004
文摘Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are characterized by scanning electron microscopy and Doppler broadening positron annihilation spectroscopy. The results show that plenty of point defects can be produced by introducing He during the growth of the multilayer nanofilms. With the increasing natural storage time, He located in the near surface of the Cu//W multilayer nanofilm at room temperature could be released gradually and induce the segregation of He-related defects due to the diffusion of He and defects. However, more He in the deep region spread along the interface of the Cu/W multilayer nanofilm. Meanwhile, the layer interfaces can still maintain their stability.
基金Ministry of Education, Science, Sports and Culture under Grantin-Aid for Scielltific Research on Priority Areas (A), Japan!(No.
文摘GMR effect of multilayers of bcc-Fe(M)(M=Co, Ni) alloy and Cu layers has been investigated. The maximum MR ratio is found at 1.1 nm Fe(Co) and 1.3~1.4 nm Cu layer thickness in [Fe(Co)/CuJ, and at 1.6 nm Fe(Ni) and 1.4 nm Cu layer thickness in [Fe(Ni)/Cu]. Under the optimum annealing condition, the MR ratio increases up to 50% and 38% for Fe(Co) and Fe(Ni) systems, respectively. The origin of the increase of GMR is discussed, taking the progress of preferred orientation of Fe(Co)[100] or Fe(Ni)[100] by anneahng into account.
基金Supported by the Tianjin Natural Science Foundation under Grant Nos 13JCYBJC18900,12JCQNJC01300 and13JCZDJC26700the Ministry of Science and Technology of China under Grant No 2013AA014201the Tianjin Key Discipline of Material Physics and Chemistry
文摘We compare the electrical, optical, and surface properties of the PEDOT:PSS/Cu nanowires (Cu NWs)/PEDOT: PSS (PCP) multilayer for organic solar cells. It is demonstrated that the electrical and optical properties of the PEDOT could be improved by the insertion of a Cu NW layer due to its very low resistivity and surface morphology. The organic bulk heterojunction solar cell fabricated on the multil^yer exhibits a higher power conversion ef^ciency than devices based on the PEDOT:PSS or PEDOT:PSS/Cu NWs layer. Moreover, the PCP multilayer can improve cell-performances such as a fill factor and the internal resistance in the device due to horizontally well-aligned Cu NWs. The results suggest that the PCP multilayer is a promising low-cost and low-temperature processing buffer layer candidate for low-cost organic photovoltaics.
文摘The magnetic properties of Ni/Cu multilayers, prepared by the electron beam evaporation method under ultra high vacuum conditions, have been systematically studied by magnetic measurements. The temperature dependence of the spontaneous magnetization M (T) is well described by a T3/2 law. A spin wave theory has been used to explain the magnetization versus temperature. Based on this theory, the approximate values for the exchange interactions have been obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.5132100351322104and 51201123)+5 种基金the National Basic Research Program of China(Grant No.2010CB631003)the 111 Project of China(Grant No.B06025)the support from the Fundamental Research Funds for the Central Universitiesthe Tengfei Scholar projectthe Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2015JM5158)the Shaanxi Province Postdoctoral Scientific Research Project for partial financial support
文摘Cu-Al/Al nanostructured metallic multilayers with Al layer thickness hAl varying from 5 to 100 nm were prepared, and their mechanical properties and deformation behaviors were studied by nanoindentation testing. The results showed that the hardness increased drastically with decreasing hAl down to about 20 nm, whereafter the hardness reached a plateau that approaches the hardness of the alloyed Cu-Al monolithic thin films. The strain rate sensitivity (SRS, m), however, decreased monotonically with reducing hAl. The layer thickness-dependent strengthening mechanisms were discussed, and it was revealed that the alloyed Cu-Al nanolayers dominated at hAl≤ 20 nm, while the crystalline Al nanolayers dominated at hAl 〉 20 nm. The plastic deformation was mainly related to the ductile Al nanolayers, which was responsible for the monotonic evolution of SRS with hAl. In addition, the hAFdependent hardness and SRS were quanti- tatively modeled in light of the strengthening mechanisms at different length scales.