Developing bifunctional electrocatalysts for overall water splitting reaction is still highly desired but with large challenges. Herein, an amorphous Fe Co Ni-S electrocatalyst was developed using thioacetamide for th...Developing bifunctional electrocatalysts for overall water splitting reaction is still highly desired but with large challenges. Herein, an amorphous Fe Co Ni-S electrocatalyst was developed using thioacetamide for the sulfuration of Fe Co Ni hydroxide during the hydrothermal process. The obtained catalyst exhibited an amorphous structure with hybrid bonds of metal-S bond and metal-O bonds in the catalyst system. The optimized catalyst showed a largely improved bifunctional catalytic ability to drive water splitting reaction in the alkaline electrolyte compared to the Fe Co Ni hydroxide. It required an overpotential of 280 m V and 80 m V(No-IR correction) to offer 10 m A/cm^(2)for water oxidation and reduction respectively;a low cell voltage of 1.55 V was required to reach 10 m A/cm^(2)for the water electrolysis with good stability for12 h. Moreover, this catalyst system showed high catalytic stability, catalytic kinetics, and Faraday efficiency for water splitting reactions. Considering the very low intrinsic activity of Fe Co Ni hydroxide, the efficient bifunctional catalytic ability should result from the newly formed hybrid active sites of metallic metal-S species and the high valence state of metal oxide species. This work is effective in the bifunctional catalytic ability boosting for the transition metal materials by facile sulfuration in the hydrothermal approach.展开更多
The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results sh...The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results show that reducing the grain size down into the nano-meter regime,on the one hand,significantly elevates the hardness of the FeCoNi alloy,and on the other hand,facilitates the formation of a surface oxide layer.As a result,the wear rate of the nanocrystalline(NC)FeCoNi alloy is one order of magnitude lower than its coarse-grained counterpart.The NC FeCoNi alloy also exhibits obviously enhanced wear resistance compared with conventional NC Ni and Ni-based alloys in terms of both lower wear rate and friction coefficient.Such enhancement in tribological properties mainly stems from the improved strain hardening ability,owing to the inevitable concentration heterogeneity in MEA that imposes extra resistance to dislocation motion.展开更多
The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized...The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.展开更多
Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic ...Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.展开更多
High/medium entropy alloys(HEAs/MEAs)with high electrocatalytic activity have attracted great attention in water electrolysis applications.However,facile synthesis of self-supporting high/medium entropy alloys electro...High/medium entropy alloys(HEAs/MEAs)with high electrocatalytic activity have attracted great attention in water electrolysis applications.However,facile synthesis of self-supporting high/medium entropy alloys electrocatalysts with rich active sites through classical metallurgical methods is still a challenge.Here,a self-supporting porous FeCoNi MEA electrocatalyst with nanosheets-shaped surface for oxygen evolution reaction(OER)was prepared by a one-step electrochemical process from the metal oxides in molten CaCl_(2).The formation of the FeCoNi MEA is attributed to the oxides electro-reduction,high-temperature diffusion and solid solution.Additionally,the morphology and structure of the FeCoNi MEA can be precisely controlled by adjusting the electrolysis time and temperature.The electronic structure regulation and the reduced energy barrier of OER from the“cocktail effect”,the abundant exposed active sites brought by surface ultrathin nanosheets,the good electronic conductivity and electrochemical stability from the self-supporting structure enable the FeCoNi MEA electrode shows high-performance OER electrocatalysis,exhibiting a low overpotential of 233 mV at a current density of 10 mA cm^(-2),a low Tafel slope of 29.8 mV dec^(-1),and an excellent stability for over 500 h without any obvious structural destruction.This work demonstrates a facile one-step electrochemical metallurgical approach for fabricating self-supporting HEAs/MEAs electrocatalysts with nanosized surface for the application in water electrolysis.展开更多
基金supported by the National Natural Science Foundation of China (No. 21972124)the Priority Academic Program Development of Jiangsu Higher Education Institutionthe support of the Six Talent Peaks Project of Jiangsu Province (No. XCL-070–2018)。
文摘Developing bifunctional electrocatalysts for overall water splitting reaction is still highly desired but with large challenges. Herein, an amorphous Fe Co Ni-S electrocatalyst was developed using thioacetamide for the sulfuration of Fe Co Ni hydroxide during the hydrothermal process. The obtained catalyst exhibited an amorphous structure with hybrid bonds of metal-S bond and metal-O bonds in the catalyst system. The optimized catalyst showed a largely improved bifunctional catalytic ability to drive water splitting reaction in the alkaline electrolyte compared to the Fe Co Ni hydroxide. It required an overpotential of 280 m V and 80 m V(No-IR correction) to offer 10 m A/cm^(2)for water oxidation and reduction respectively;a low cell voltage of 1.55 V was required to reach 10 m A/cm^(2)for the water electrolysis with good stability for12 h. Moreover, this catalyst system showed high catalytic stability, catalytic kinetics, and Faraday efficiency for water splitting reactions. Considering the very low intrinsic activity of Fe Co Ni hydroxide, the efficient bifunctional catalytic ability should result from the newly formed hybrid active sites of metallic metal-S species and the high valence state of metal oxide species. This work is effective in the bifunctional catalytic ability boosting for the transition metal materials by facile sulfuration in the hydrothermal approach.
基金supported by the Science and Technology Development Program of Jilin Province,China(No.20160520007JH)the Major Science and Technology Special Project in Jilin Province,China(No.20210301024GX)the National Natural Science Foundation of China(Nos.51601067,51775266,52301169).
文摘The effects of nanostructuring on the mechanical and dry-sliding wear behaviors of a FeCoNi medium-entropy alloy(MEA)were systematically investigated through nano-indentation and ball-on-disc wear tests.The results show that reducing the grain size down into the nano-meter regime,on the one hand,significantly elevates the hardness of the FeCoNi alloy,and on the other hand,facilitates the formation of a surface oxide layer.As a result,the wear rate of the nanocrystalline(NC)FeCoNi alloy is one order of magnitude lower than its coarse-grained counterpart.The NC FeCoNi alloy also exhibits obviously enhanced wear resistance compared with conventional NC Ni and Ni-based alloys in terms of both lower wear rate and friction coefficient.Such enhancement in tribological properties mainly stems from the improved strain hardening ability,owing to the inevitable concentration heterogeneity in MEA that imposes extra resistance to dislocation motion.
基金Projects(51671217,51604112) supported by the National Natural Science Foundation of ChinaProject(2017JJ3089) supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content.
基金supported by the Overseas Expertise Introduction Center for Discipline Innovation(D18025)National Nature Science Foundation of China(Grant No.41931295)
文摘Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.
基金supported by the National Natural Science Foundation of China(Nos.52022054,51974181,52004155,52004157,52374307,52304331,52334009)the National Key Research and Development Program of China(No.2022YFC2906100)+4 种基金the China Postdoctoral Science Foundation(No.2022M712023)the Science and Technology Commission of Shanghai Municipality(No.21DZ1208900)the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD48)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(No.TP2019041)the“Shuguang Program”supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission(No.21SG42).
文摘High/medium entropy alloys(HEAs/MEAs)with high electrocatalytic activity have attracted great attention in water electrolysis applications.However,facile synthesis of self-supporting high/medium entropy alloys electrocatalysts with rich active sites through classical metallurgical methods is still a challenge.Here,a self-supporting porous FeCoNi MEA electrocatalyst with nanosheets-shaped surface for oxygen evolution reaction(OER)was prepared by a one-step electrochemical process from the metal oxides in molten CaCl_(2).The formation of the FeCoNi MEA is attributed to the oxides electro-reduction,high-temperature diffusion and solid solution.Additionally,the morphology and structure of the FeCoNi MEA can be precisely controlled by adjusting the electrolysis time and temperature.The electronic structure regulation and the reduced energy barrier of OER from the“cocktail effect”,the abundant exposed active sites brought by surface ultrathin nanosheets,the good electronic conductivity and electrochemical stability from the self-supporting structure enable the FeCoNi MEA electrode shows high-performance OER electrocatalysis,exhibiting a low overpotential of 233 mV at a current density of 10 mA cm^(-2),a low Tafel slope of 29.8 mV dec^(-1),and an excellent stability for over 500 h without any obvious structural destruction.This work demonstrates a facile one-step electrochemical metallurgical approach for fabricating self-supporting HEAs/MEAs electrocatalysts with nanosized surface for the application in water electrolysis.