期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Micro–meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance 被引量:2
1
作者 Fufang Chao Baoxing Wang +6 位作者 Jiaojiao Ren Yingwei Lu Wenrui Zhang Xizhang Wang Lin Cheng Yongbing Lou Jinxi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期212-219,I0008,共9页
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X... Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries. 展开更多
关键词 Micro–meso-macroporous feco-n-c Li-O2 battery Cathode catalyst Oxygen evolution/reduction reaction
在线阅读 下载PDF
高盐含酚废水的降解及其在离子膜电解中的资源化利用
2
作者 何文奇 赵经纬 +4 位作者 兰培强 严朝朝 倪杰 韦彦斐 黄梅 《高校化学工程学报》 北大核心 2025年第4期714-723,共10页
高盐有机废水若不能得到有效处理而被任意排放,将会造成环境污染和无机盐的浪费。在“双碳”背景下,高盐废水“零排放”和盐分的高值化再利用已成为该领域的研究重点。由于高盐废水中有机污染物的高效去除是实现脱盐水回用和废水中盐分... 高盐有机废水若不能得到有效处理而被任意排放,将会造成环境污染和无机盐的浪费。在“双碳”背景下,高盐废水“零排放”和盐分的高值化再利用已成为该领域的研究重点。由于高盐废水中有机污染物的高效去除是实现脱盐水回用和废水中盐分资源化利用的前提,文中通过制备金属-有机框架(MOFs)衍生催化剂FeCo-C/N,探究FeCo-C/N+O_(3)催化氧化体系对NaCl质量浓度为310g·L^(-1)、总有机碳(TOC)含量为20~60mg·L^(-1)的高盐含酚废水处理效果,使得氧化后水样的TOC去除率达到65.1%~88.2%,废水中TOC残余含量均小于10mg·L^(-1),满足离子膜电解中对进槽盐水的品质要求。继续将氧化后的高盐废水进行离子膜电解试验,使阳极出槽淡盐水中NaCl质量浓度介于200.0~210.0g·L^(-1),阴极出槽盐水中NaOH质量分数介于32.0%~33.5%,电解过程进行336h后的电流效率和吨碱电耗分别是96.8%和2167.0kW·h,表明处理后的高盐含酚废水在离子膜电解中运行稳定、经济合理,具备良好的资源化利用前景。研究结论能为高盐有机废水大规模应用于离子膜电解工业提供参考。 展开更多
关键词 FeCo-C/N MOFs衍生催化剂 高盐含酚废水 资源化利用 离子膜电解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部