Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticl...Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticles were characterized using a variety of techniques, including Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). These characterizations confirmed the successful formation of Fe3O4 nanoparticles. The FTIR spectra identified characteristic peaks corresponding to the functional groups present, and XRD analysis, using Scherer’s equation, determined an average crystalline size of 1.2 nm for the Fe3O4 nanoparticles. TGA results demonstrated the thermal stability of the nanoparticles, SEM imaging revealed distinct honeycomb-like structures for the nanoparticles synthesized with water as the solvent, while the VSM analysis was used to determine the magnetic behavior of the nanoparticles.展开更多
A block copolymer of 2-dimethylaminoethyl methacrylate(DMAEMA) and glycidyl methacrylate(GMA)was grafted onto the surface of magnetic nanoparticles(Fe3O4) via atom transfer radical polymerization.The resultant PGMA-b-...A block copolymer of 2-dimethylaminoethyl methacrylate(DMAEMA) and glycidyl methacrylate(GMA)was grafted onto the surface of magnetic nanoparticles(Fe3O4) via atom transfer radical polymerization.The resultant PGMA-b-PDMAEMA-grafted-Fe3O4 magnetic nanoparticles with amino and epoxy groups were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis, and scanning electron microscopy. Lipase from Burkholderia cepacia was successfully immobilized onto the magnetic nanoparticles by physical adsorption and covalent bonding. The immobilization capacity of the magnetic particles is 0.5 mg lipase per mg support, with an activity recovery of up to 43.1% under the optimum immobilization condition. Biochemical characterization shows that the immobilized lipase exhibits improved thermal stability, good tolerance to organic solvents with high lg P, and higher p H stability than the free lipase at p H 9.0. After six consecutive cycles, the residual activity of the immobilized lipase is still over55% of its initial activity.展开更多
Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 n...Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 nanoparticles were characterized by X-ray diffraction diffractometer, transmission electron microscope, FT-IR spectrometer, vibrating sample magnetometer, and dynamic light scattering instrument. The in vivo labeling effect of folate-conjugated Fe3O4 nanoparticles on the hepatoma cells was investigated in tumor-bearing rat. The results demonstrate that the as-prepared nanoparticles have cubic structure of Fe3O4 with a particle size of about 8 nm and hydrated diameter of 25.7 nm at a saturation magnetization of 51 A·m2/kg. These nanoparticles possess good physiological stability, low cytotoxicity on human skin fibroblasts and negligible effect on Wistar rats at the concentration as high as 3 mg/kg body mass. The folate-conjugated Fe3O4 nanoparticles could be effectively mediated into the human hepatoma Bel 7402 cells through the binding of folate and folic acid receptor, enhancing the signal contrast of tumor tissue and surrounding normal tissue in MRI imaging. It is in favor of the tumor cells labeling, tracing, magnetic resonance imaging (MRI) target detection and magnetic hyperthermia.展开更多
Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, an...Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.展开更多
Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing ...Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed.展开更多
Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechan...Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide(RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10-20 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore,with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater.展开更多
The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In t...The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In this work,N-doped porous hollow carbon spheres encapsulated with ultrafine Fe/Fe3O4 nanoparticles(FeOx@N-PHCS)were fabricated by impregnation and subsequent pyrolysis,using melamine-formaldehyde resin spheres as self-sacrifice templates and polydopamine as N and C sources.The sufficient adsorption of Fe3+on the polydopamine endowed the formation of Fe-Nx species upon high-temperature carbonization.The prepared FeOx@N-PHCS has advanced features of large specific surface area,porous hollow structure,high content of N dopants,sufficient Fe-Nx species and ultrafine FeOx nanoparticles.These features endow FeOx@N-PHCS with enhanced mass transfer and considerable active sites,leading to high activity and stability in catalyzing ORR and OER in alkaline electrolyte.Furthermore,the rechargeable Zn-air battery with FeOx@N-PHCS as air cathode catalyst exhibits a large peak power density,narrow charge-discharge potential gap and robust cycling stability,demonstrating the potential of the fabricated FeOx@N-PHCS as a promising electrode material for metal-air batteries.This new finding may open an avenue for rational design of bifunctional catalysts by integrating different active components within all-in-one catalyst for different electrochemical reactions.展开更多
Cross-linkedβ-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethylβ-cyclodextrin(CM-β-CD) modified Fe3O4 nanoparti...Cross-linkedβ-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethylβ-cyclodextrin(CM-β-CD) modified Fe3O4 nanoparticles inβ-cyclodextrin alkaline solution by using epichlorohydrin as crosslinking agent.The morphology,structure and magnetic properties of the prepared composite nanoparticles were investigated by transmission electron microscopy(TEM),Fourier transform infrared(FTIR) spectrometry,X-ray diffraction(XRD) measurement,thermogravimetric analysis(TGA) and Vibrating sample magnetometry (VSM),respectively.展开更多
Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in org...Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in organic medium glycol were gained and the mean size of Fe3O4 nanopowders was 33.7 nm. So it can be concluded that magnetic micro-sphere is made of a few Fe3O4 crystals. Many factors of modification were researched, such as the time of ball milling, the content of Fe3O4 and the content of KH570. The modification of Fe3O4 is relative to the time of ball milling, but the dominant function is affected by the content of Fe3O4 and KH570. When the content of Fe3O4 is known, there is a suitable content of KH570. Different content of Fe3O4 will make the different suitable content of KH570, but the range of latter is less than former, which is relative to the distribution of KH570 on Fe3O4 surface or in the solution.展开更多
The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS ...The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O- Si bond and an organic coating layer also was formed. Fe3O4 nanoparticles were spheres partly with mean size of 18,8 nm studied by TEM, which was consistent with the result 17.9 nm calculated by Scherrer's equation. KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting. Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained.展开更多
Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale...Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale with an average diameter of approximately 12 to 18 nm. The introduction of Fe3O4 MNPs increased levofloxacin sono-degradation in the US/H2O2 system. Experimental parameters, such as Fe3O4 MNP dose, initial solution p H, and H2O2 concentration, were investigated by a one-factor-at-a-time approach. The results showed that Fe3O4 MNPs enhanced levofloxacin removal in the p H range from 4.0 to 9.0. Levofloxacin removal ratio increased with Fe3O4 MNP dose up to 1.0 g·L-1and with H2O2 concentration until reaching the maximum. Moreover, three main intermediate compounds were identified by HPLC with electrospray ionisation tandem mass spectrometry, and a possible degradation pathway was proposed. This study suggests that combination of H2O2, Fe3O4 MNPs and US is a good way to improve the degradation efficiency of antibiotics.展开更多
We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nano...We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nanofluids in order to show the effect of corona structure on the phase behavior, dispersion, as well as rheology properties. Results demonstrate novel liquid-like behaviors without solvent at room temperature. Fe3O4 magnetic nanoparticles content is bigger than 8% and its size is about 23 nm. For the solvent-free nanofluids,the long chain corona has the internal plasticization, which can decrease the loss modulus of system, while the short chain of corona results in the high viscosity of nanofluids. Long alkyl chains of modifiers lead to lower viscosity and better flowability of nanofluids. The rheology and viscosity of the nanofluids are correlated to the microscopic structure of the corona, which provide an in-depth insight into the preparing nanofluids with promising applications based on their tunable and controllable physical properties.展开更多
The study was designed to investigate the use of two sorbents namely(i) Fe3O4 nanoparticles immobilized in sodium alginate matrix(FNPSA) and(ii) Fe3O4 nanoparticles and saponified orange peel residue immobilized in so...The study was designed to investigate the use of two sorbents namely(i) Fe3O4 nanoparticles immobilized in sodium alginate matrix(FNPSA) and(ii) Fe3O4 nanoparticles and saponified orange peel residue immobilized in sodium alginate matrix(FNPSOPR) as sorbents for fluoride removal from contaminated water. The synthesized nanoparticles were analyzed and characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, and scanning electron microscopy with energy dispersive X-ray spectroscopy and Fourier transform-infrared spectrometry. The sorbent matrices were prepared in the form of beads and surface functionalized to enable enhanced sorption of fluoride ions. Batch sorption studies were carried out and the sorption isotherm and reaction kinetics were analyzed. Both the sorbents followed Langmuir model of isotherm and fitted well with Pseudo first order reaction. The maximum sorption capacity exhibited by FNPSA and FNPSOPR was58.24 mg·g-1and 80.33 mg·g-1respectively. Five sorption–desorption cycles exhibited 100%, 97.56%, 94.53%,83.21%, and 76.53% of regeneration of FNPSOPR. Accordingly, it is demonstrated that FNSOPR could be used as a promising sorbent for easy and efficient removal of fluoride from contaminated water with good reusability.The current work suggests a simple and effective method to remove fluoride from contaminated water.展开更多
Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin...Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis.展开更多
Superparamagnetic poly(styrene)-co-poly(2-acrylanmido-2-methyl propanesulfonic acid) (PSt-co-PAMPS) and poly(methylmethacrylate)-co-poly(glycidyl methacrylate) (PMMA-co-PGMA) microspheres with mean size of...Superparamagnetic poly(styrene)-co-poly(2-acrylanmido-2-methyl propanesulfonic acid) (PSt-co-PAMPS) and poly(methylmethacrylate)-co-poly(glycidyl methacrylate) (PMMA-co-PGMA) microspheres with mean size of 170 nm were prepared by emulsion polymerization in the presence of oleic acid-coated Fe3O4 nanoparticles. The structures, morphologies, diameter and diameter distribution of the as-prepared microspheres were identified by Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The saturation magnetizations of PSt-co-PAMPS and PMMA-co-PGMA microspheres are 21.94 and 25.07 emu/g, respectively. The as-synthesized magnetic microspheres were used for immobilization of Bovine serum albumin (BSA) by physical interaction and covalent interaction respectively. The equilibrium amount of BSA immobilized onto PMMA-co-PGMA microspheres was 86.48 mg/g microspheres in 90 min, while on PSt-co-PAMPS microspheres was 59.62 mg/g microspheres in 120 min.展开更多
A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordinati...A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.展开更多
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g...Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm.展开更多
In this study, Fe3O4nanoparticles(Fe3O4NPs) were successfully prepared via oxidation–precipitation method and characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform inf...In this study, Fe3O4nanoparticles(Fe3O4NPs) were successfully prepared via oxidation–precipitation method and characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). The characterization results indicated that Fe3O4 NPs with regular crystal structure and a narrow of diameters had been synthesized successfully and had high purity. A series of experiments were carried out to investigate the degradation of Orange II by the obtained heterogeneous Fe3O4 catalysts in the presence of H2O2. The response surface methodology(RSM) based on Box–Behnken design(BBD) was employed to design and optimize individual and interactive effects of the four main independent parameters(catalyst loading, initial p H, reaction temperature and H2O2concentration) on decolorization efficiency of Orange II. A significant quadratic model(p-value 〈0.0001, R2= 0.9369) was derived using analysis of variance(ANOVA). Optimum conditions were catalyst loading of 1.5 g/L, initial p H of 2.7, reaction temperature of 42 8C and H2O2 concentration of 22 mmol/L, respectively. The predicted decolorization rate under the optimum conditions as determined by the proposed model was 99.55%. Confirmatory tests were carried out and the decolorization rate of 99.49% was observed under the optimum conditions, which agreed well with the model prediction.展开更多
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was de...A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.展开更多
A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the ...A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.展开更多
文摘Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticles were characterized using a variety of techniques, including Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). These characterizations confirmed the successful formation of Fe3O4 nanoparticles. The FTIR spectra identified characteristic peaks corresponding to the functional groups present, and XRD analysis, using Scherer’s equation, determined an average crystalline size of 1.2 nm for the Fe3O4 nanoparticles. TGA results demonstrated the thermal stability of the nanoparticles, SEM imaging revealed distinct honeycomb-like structures for the nanoparticles synthesized with water as the solvent, while the VSM analysis was used to determine the magnetic behavior of the nanoparticles.
基金Supported by the National Basic Research Program of China(2009CB724706)
文摘A block copolymer of 2-dimethylaminoethyl methacrylate(DMAEMA) and glycidyl methacrylate(GMA)was grafted onto the surface of magnetic nanoparticles(Fe3O4) via atom transfer radical polymerization.The resultant PGMA-b-PDMAEMA-grafted-Fe3O4 magnetic nanoparticles with amino and epoxy groups were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis, and scanning electron microscopy. Lipase from Burkholderia cepacia was successfully immobilized onto the magnetic nanoparticles by physical adsorption and covalent bonding. The immobilization capacity of the magnetic particles is 0.5 mg lipase per mg support, with an activity recovery of up to 43.1% under the optimum immobilization condition. Biochemical characterization shows that the immobilized lipase exhibits improved thermal stability, good tolerance to organic solvents with high lg P, and higher p H stability than the free lipase at p H 9.0. After six consecutive cycles, the residual activity of the immobilized lipase is still over55% of its initial activity.
基金Project(2011JQ028)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2008SK3114,2010SK3113)supported by Hunan Provincial Science&Technology Plan,China+2 种基金Project(B2007086)supported by Science&Research Funds of Hunan Health Department,ChinaProject(12JJ5057)supported by Natural Science Foundation of Hunan Province,ChinaProjects(XCX1119,XCX12073)supported by University Students Innovative Experiment Plan Project of Hunan Agricultural University,China
文摘Highly biocompatible superparamagnetic Fe3O4 nanoparticles were synthesized by amide of folic acid (FA) ligands and the NH2-group onto the surface of Fe3O4 nanoparticles. The as-synthesized folate-conjugated Fe3O4 nanoparticles were characterized by X-ray diffraction diffractometer, transmission electron microscope, FT-IR spectrometer, vibrating sample magnetometer, and dynamic light scattering instrument. The in vivo labeling effect of folate-conjugated Fe3O4 nanoparticles on the hepatoma cells was investigated in tumor-bearing rat. The results demonstrate that the as-prepared nanoparticles have cubic structure of Fe3O4 with a particle size of about 8 nm and hydrated diameter of 25.7 nm at a saturation magnetization of 51 A·m2/kg. These nanoparticles possess good physiological stability, low cytotoxicity on human skin fibroblasts and negligible effect on Wistar rats at the concentration as high as 3 mg/kg body mass. The folate-conjugated Fe3O4 nanoparticles could be effectively mediated into the human hepatoma Bel 7402 cells through the binding of folate and folic acid receptor, enhancing the signal contrast of tumor tissue and surrounding normal tissue in MRI imaging. It is in favor of the tumor cells labeling, tracing, magnetic resonance imaging (MRI) target detection and magnetic hyperthermia.
文摘Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step template- free approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit snperparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.
基金This work was supported by the National Natural Science Foundation of China (Nos. 90406023 and 60571031);National Important Science Research Program of China (Nos. 2006CB933206 and 2006CB705606).
文摘Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed.
基金financially supported by National Natural Science Foundation of China (No. 21377084)Shanghai Municipal Natural Science Foundation (No. 13ZR1421000)
文摘Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide(RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10-20 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore,with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater.
基金supported by the National Natural Science Foundation of China(21421001,21573115,21875118)Tianjin Science and Technology Commission(18JCTPJC55900)+1 种基金the Natural Science Foundation of Tianjin(17JCYBJC17100,19JCZDJC37700)the 111 Project(B12015).
文摘The design and development of low-cost,efficient,and stable bifunctional electrocatalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desirable for rechargeable metal-air batteries.In this work,N-doped porous hollow carbon spheres encapsulated with ultrafine Fe/Fe3O4 nanoparticles(FeOx@N-PHCS)were fabricated by impregnation and subsequent pyrolysis,using melamine-formaldehyde resin spheres as self-sacrifice templates and polydopamine as N and C sources.The sufficient adsorption of Fe3+on the polydopamine endowed the formation of Fe-Nx species upon high-temperature carbonization.The prepared FeOx@N-PHCS has advanced features of large specific surface area,porous hollow structure,high content of N dopants,sufficient Fe-Nx species and ultrafine FeOx nanoparticles.These features endow FeOx@N-PHCS with enhanced mass transfer and considerable active sites,leading to high activity and stability in catalyzing ORR and OER in alkaline electrolyte.Furthermore,the rechargeable Zn-air battery with FeOx@N-PHCS as air cathode catalyst exhibits a large peak power density,narrow charge-discharge potential gap and robust cycling stability,demonstrating the potential of the fabricated FeOx@N-PHCS as a promising electrode material for metal-air batteries.This new finding may open an avenue for rational design of bifunctional catalysts by integrating different active components within all-in-one catalyst for different electrochemical reactions.
基金financially supported by the Guangdong Natural Science Foundation(No.020891)
文摘Cross-linkedβ-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethylβ-cyclodextrin(CM-β-CD) modified Fe3O4 nanoparticles inβ-cyclodextrin alkaline solution by using epichlorohydrin as crosslinking agent.The morphology,structure and magnetic properties of the prepared composite nanoparticles were investigated by transmission electron microscopy(TEM),Fourier transform infrared(FTIR) spectrometry,X-ray diffraction(XRD) measurement,thermogravimetric analysis(TGA) and Vibrating sample magnetometry (VSM),respectively.
基金This work was financially supported by the Graduate Innovation Plan Projects of Jiangsu Province in 2005.
文摘Fe3O4 nanoparticles were prepared by chemistry co-precipitation and the mean crystal size was 17.9 nm measured by XRD. After it had been treated by silane-coupling agents KH570, magnetic micro-spheres dispersed in organic medium glycol were gained and the mean size of Fe3O4 nanopowders was 33.7 nm. So it can be concluded that magnetic micro-sphere is made of a few Fe3O4 crystals. Many factors of modification were researched, such as the time of ball milling, the content of Fe3O4 and the content of KH570. The modification of Fe3O4 is relative to the time of ball milling, but the dominant function is affected by the content of Fe3O4 and KH570. When the content of Fe3O4 is known, there is a suitable content of KH570. Different content of Fe3O4 will make the different suitable content of KH570, but the range of latter is less than former, which is relative to the distribution of KH570 on Fe3O4 surface or in the solution.
基金the Natural Science Fund of Jiangsu province (No.BK2007586)Jiangsu Planned Projects(No.0701012B)for Postdoctoral Research Funds
文摘The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O- Si bond and an organic coating layer also was formed. Fe3O4 nanoparticles were spheres partly with mean size of 18,8 nm studied by TEM, which was consistent with the result 17.9 nm calculated by Scherrer's equation. KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting. Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained.
基金Supported by the National Natural Science Foundation of China(51009115)Shaanxi Provincial Department of Education Key Laboratory Project(13JS067)+2 种基金the Hall of Shaanxi Province Science and Technology(2013JK0881)the Research Plan Project of Water Resources Department of Shaanxi Province(2013slkj-07)the Innovation of Science and Technology Fund of Xi'an University of Technology(211302)
文摘Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale with an average diameter of approximately 12 to 18 nm. The introduction of Fe3O4 MNPs increased levofloxacin sono-degradation in the US/H2O2 system. Experimental parameters, such as Fe3O4 MNP dose, initial solution p H, and H2O2 concentration, were investigated by a one-factor-at-a-time approach. The results showed that Fe3O4 MNPs enhanced levofloxacin removal in the p H range from 4.0 to 9.0. Levofloxacin removal ratio increased with Fe3O4 MNP dose up to 1.0 g·L-1and with H2O2 concentration until reaching the maximum. Moreover, three main intermediate compounds were identified by HPLC with electrospray ionisation tandem mass spectrometry, and a possible degradation pathway was proposed. This study suggests that combination of H2O2, Fe3O4 MNPs and US is a good way to improve the degradation efficiency of antibiotics.
基金supported by National Natural Science Foundations(51073129 and50971104)Aeronautical Science Foundation of China(2010ZF53060)graduate starting seed fund of Northwestern Polytechnical University(Z2011012)
文摘We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanofluids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nanofluids in order to show the effect of corona structure on the phase behavior, dispersion, as well as rheology properties. Results demonstrate novel liquid-like behaviors without solvent at room temperature. Fe3O4 magnetic nanoparticles content is bigger than 8% and its size is about 23 nm. For the solvent-free nanofluids,the long chain corona has the internal plasticization, which can decrease the loss modulus of system, while the short chain of corona results in the high viscosity of nanofluids. Long alkyl chains of modifiers lead to lower viscosity and better flowability of nanofluids. The rheology and viscosity of the nanofluids are correlated to the microscopic structure of the corona, which provide an in-depth insight into the preparing nanofluids with promising applications based on their tunable and controllable physical properties.
基金the management of VIT University for their support in research and Defence Metallurgical Research Laboratory, DRDO, Hyderabad for helping in VSM analysis
文摘The study was designed to investigate the use of two sorbents namely(i) Fe3O4 nanoparticles immobilized in sodium alginate matrix(FNPSA) and(ii) Fe3O4 nanoparticles and saponified orange peel residue immobilized in sodium alginate matrix(FNPSOPR) as sorbents for fluoride removal from contaminated water. The synthesized nanoparticles were analyzed and characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, and scanning electron microscopy with energy dispersive X-ray spectroscopy and Fourier transform-infrared spectrometry. The sorbent matrices were prepared in the form of beads and surface functionalized to enable enhanced sorption of fluoride ions. Batch sorption studies were carried out and the sorption isotherm and reaction kinetics were analyzed. Both the sorbents followed Langmuir model of isotherm and fitted well with Pseudo first order reaction. The maximum sorption capacity exhibited by FNPSA and FNPSOPR was58.24 mg·g-1and 80.33 mg·g-1respectively. Five sorption–desorption cycles exhibited 100%, 97.56%, 94.53%,83.21%, and 76.53% of regeneration of FNPSOPR. Accordingly, it is demonstrated that FNSOPR could be used as a promising sorbent for easy and efficient removal of fluoride from contaminated water with good reusability.The current work suggests a simple and effective method to remove fluoride from contaminated water.
文摘Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis.
基金Funded by the National Natural Science Foundation of China (20876070)Technology Innovation Team of Universities Funded Project of Jiangsu Province (2007-5)
文摘Superparamagnetic poly(styrene)-co-poly(2-acrylanmido-2-methyl propanesulfonic acid) (PSt-co-PAMPS) and poly(methylmethacrylate)-co-poly(glycidyl methacrylate) (PMMA-co-PGMA) microspheres with mean size of 170 nm were prepared by emulsion polymerization in the presence of oleic acid-coated Fe3O4 nanoparticles. The structures, morphologies, diameter and diameter distribution of the as-prepared microspheres were identified by Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The saturation magnetizations of PSt-co-PAMPS and PMMA-co-PGMA microspheres are 21.94 and 25.07 emu/g, respectively. The as-synthesized magnetic microspheres were used for immobilization of Bovine serum albumin (BSA) by physical interaction and covalent interaction respectively. The equilibrium amount of BSA immobilized onto PMMA-co-PGMA microspheres was 86.48 mg/g microspheres in 90 min, while on PSt-co-PAMPS microspheres was 59.62 mg/g microspheres in 120 min.
基金supported by National Natural Science Foundation of China (Nos. 21271130 and 21371122)Shanghai Science and Technology Development Fund (Nos. 12ZR1421800 and 13520502800)International Joint Laboratory on Resource Chemistry (IJLRC)
文摘A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51571135,11274214 and 61434002the Special Funds of Shanxi Scholars Program under Grant No IRT1156+1 种基金Collaborative Innovation Center for Shanxi Advanced Permanent Materials and Technologythe Special Funds of the Ministry of Education of China under Grant No 20121404130001
文摘Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm.
基金financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20114219110002)Fund from Coal Conversion and New Carbon Materials Hubei Key Laboratory(Wuhan University of Science and Technology)(No.WKDM201107)Educational Commission of Hubei Province of China(No.D20131107)
文摘In this study, Fe3O4nanoparticles(Fe3O4NPs) were successfully prepared via oxidation–precipitation method and characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR). The characterization results indicated that Fe3O4 NPs with regular crystal structure and a narrow of diameters had been synthesized successfully and had high purity. A series of experiments were carried out to investigate the degradation of Orange II by the obtained heterogeneous Fe3O4 catalysts in the presence of H2O2. The response surface methodology(RSM) based on Box–Behnken design(BBD) was employed to design and optimize individual and interactive effects of the four main independent parameters(catalyst loading, initial p H, reaction temperature and H2O2concentration) on decolorization efficiency of Orange II. A significant quadratic model(p-value 〈0.0001, R2= 0.9369) was derived using analysis of variance(ANOVA). Optimum conditions were catalyst loading of 1.5 g/L, initial p H of 2.7, reaction temperature of 42 8C and H2O2 concentration of 22 mmol/L, respectively. The predicted decolorization rate under the optimum conditions as determined by the proposed model was 99.55%. Confirmatory tests were carried out and the decolorization rate of 99.49% was observed under the optimum conditions, which agreed well with the model prediction.
文摘A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
基金Supported by the National Natural Science Foundation of China(No.21065001)the Natural Science Foundation of Guangxi Province,China(Nos.0639025,0991084)+2 种基金the Support Program for 100 Young and Middle-aged Disciplinary Leaders in Higher Education Institutions of Guangxi Province,China(No.RC20060703005)the Project of Key Laboratory of Development and Application of Forest Chemicals of Guangxi Province,China(No.GXFC08-06)the Fund of Education Department of Guangxi Province,China(No.200812MS074)
文摘A novel type of Fe3O4 nanoparticles modified glass carbon electrode(Fe3O4/GCE) was constructed and the electrochemical properties of N-(4-nitro-2-phenoxyphenyl)methanesulfonamide(nimesulide) were studied on the Fe3O4/GCE.In 0.4mol/L HAc-NaAc buffer solution(pH=5.0),the electrode process of nimesulide was irreversible at bare GCE and Fe3O4/GCE.The Fe3O4/GCE exhibited a remarkable catalytic and enhancement effect on the reduction of nimesulide.The reduction peak potential of nimesulide shifted positively from-0.683 V at bare GCE to-0.625 V at Fe3O4/GCE,and the sensitivity was increased by ca.3 times.Some experimental conditions were optimized.The linear range between the peak current and the concentration of nimesulide was 2.6×10-6 "1.0×10-4mol/L(R=0.993) with a detection limit of 1.3×10-7mol/L.This method has been used to determine the content of nimesulide in medical tablets.The recovery was determined to be 96.9% "101.9% by means of standard addition method.The method is comparable to UV-Vis spectrometry.