The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch...The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.展开更多
Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clus...Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.展开更多
利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜...利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜(SEM)、透射电镜(TEM)和傅立叶红外光谱(FT-IR)等手段对材料进行表征,详细研究了解析溶剂、解析溶剂体积、解析时间、吸附时间和p H值等因素对萃取效率的影响。结果表明:氨基被成功修饰在Fe3O4@SiO2纳米粒子的表面,Fe3O4@SiO2-NH2磁性纳米材料对目标全氟化合物有较好的萃取效果,在萃取时间为20 min,解析溶剂为3 m L×4含0.28%氨水的甲醇,解析时间为5 min,p H 5.0时,萃取效率最佳。在最优实验条件下,全氟化合物的检出限为0.2~0.5 ng/L,线性范围为1~500 ng/L。方法用于实际水体中目标全氟化合物的检测,样品的加标回收率不低于82.0%。展开更多
In this paper,chemical co-precipitation method was employed to synthesize Fe3O4 nanoparticles which can be well dispersed in water by using citric acid as a surfactant.Afterwards,by using Fe3O4 nanoparticles as seeds ...In this paper,chemical co-precipitation method was employed to synthesize Fe3O4 nanoparticles which can be well dispersed in water by using citric acid as a surfactant.Afterwards,by using Fe3O4 nanoparticles as seeds in a Triton X-100/hexanol/cyclohexane/water reverse microemulsion system,the core-shell structural Fe3O4@SiO2 nanocomposite particles were prepared via hydrolysis and condensation of tetraethyl orthosilicate(TEOS) under the catalysis of alkali.The effects of different stirring methods and the concentration of TEOS on the morphology of Fe3O4@SiO2 nanoparticles were investigated.The results show that the mechanical stirring can effectively control the morphology of composite nanoparticles to form a good dispersion and spherical morphology of core-shell nanoparticles.With the increase of TEOS concentration,the thickness of the SiO2 shell increases,and the morphology of the composite particles becomes more uniform.展开更多
Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale...Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale with an average diameter of approximately 12 to 18 nm. The introduction of Fe3O4 MNPs increased levofloxacin sono-degradation in the US/H2O2 system. Experimental parameters, such as Fe3O4 MNP dose, initial solution p H, and H2O2 concentration, were investigated by a one-factor-at-a-time approach. The results showed that Fe3O4 MNPs enhanced levofloxacin removal in the p H range from 4.0 to 9.0. Levofloxacin removal ratio increased with Fe3O4 MNP dose up to 1.0 g·L-1and with H2O2 concentration until reaching the maximum. Moreover, three main intermediate compounds were identified by HPLC with electrospray ionisation tandem mass spectrometry, and a possible degradation pathway was proposed. This study suggests that combination of H2O2, Fe3O4 MNPs and US is a good way to improve the degradation efficiency of antibiotics.展开更多
A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordinati...A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.展开更多
文摘The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.
基金financially supported by the Shanghai Natural Science Foundation (No. 13ZR1400300)National Key R&D Program of China (No. 2017YFB030900)
文摘Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.
文摘利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜(SEM)、透射电镜(TEM)和傅立叶红外光谱(FT-IR)等手段对材料进行表征,详细研究了解析溶剂、解析溶剂体积、解析时间、吸附时间和p H值等因素对萃取效率的影响。结果表明:氨基被成功修饰在Fe3O4@SiO2纳米粒子的表面,Fe3O4@SiO2-NH2磁性纳米材料对目标全氟化合物有较好的萃取效果,在萃取时间为20 min,解析溶剂为3 m L×4含0.28%氨水的甲醇,解析时间为5 min,p H 5.0时,萃取效率最佳。在最优实验条件下,全氟化合物的检出限为0.2~0.5 ng/L,线性范围为1~500 ng/L。方法用于实际水体中目标全氟化合物的检测,样品的加标回收率不低于82.0%。
文摘In this paper,chemical co-precipitation method was employed to synthesize Fe3O4 nanoparticles which can be well dispersed in water by using citric acid as a surfactant.Afterwards,by using Fe3O4 nanoparticles as seeds in a Triton X-100/hexanol/cyclohexane/water reverse microemulsion system,the core-shell structural Fe3O4@SiO2 nanocomposite particles were prepared via hydrolysis and condensation of tetraethyl orthosilicate(TEOS) under the catalysis of alkali.The effects of different stirring methods and the concentration of TEOS on the morphology of Fe3O4@SiO2 nanoparticles were investigated.The results show that the mechanical stirring can effectively control the morphology of composite nanoparticles to form a good dispersion and spherical morphology of core-shell nanoparticles.With the increase of TEOS concentration,the thickness of the SiO2 shell increases,and the morphology of the composite particles becomes more uniform.
基金Supported by the National Natural Science Foundation of China(51009115)Shaanxi Provincial Department of Education Key Laboratory Project(13JS067)+2 种基金the Hall of Shaanxi Province Science and Technology(2013JK0881)the Research Plan Project of Water Resources Department of Shaanxi Province(2013slkj-07)the Innovation of Science and Technology Fund of Xi'an University of Technology(211302)
文摘Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale with an average diameter of approximately 12 to 18 nm. The introduction of Fe3O4 MNPs increased levofloxacin sono-degradation in the US/H2O2 system. Experimental parameters, such as Fe3O4 MNP dose, initial solution p H, and H2O2 concentration, were investigated by a one-factor-at-a-time approach. The results showed that Fe3O4 MNPs enhanced levofloxacin removal in the p H range from 4.0 to 9.0. Levofloxacin removal ratio increased with Fe3O4 MNP dose up to 1.0 g·L-1and with H2O2 concentration until reaching the maximum. Moreover, three main intermediate compounds were identified by HPLC with electrospray ionisation tandem mass spectrometry, and a possible degradation pathway was proposed. This study suggests that combination of H2O2, Fe3O4 MNPs and US is a good way to improve the degradation efficiency of antibiotics.
基金supported by National Natural Science Foundation of China (Nos. 21271130 and 21371122)Shanghai Science and Technology Development Fund (Nos. 12ZR1421800 and 13520502800)International Joint Laboratory on Resource Chemistry (IJLRC)
文摘A magnetic sensor for detection of Pb^2+ has been developed based on Fe/Fe3O4 nanoparticles modified by3-(3,4-dihydroxyphenyl)propionic acid(DHCA). The carboxyl groups of DHCA have a strong affinity to coordination behavior of Pb^2+ thus inducing the transformation of Fe/Fe3O4 nanoparticles from a dispersed to an aggregated state with a corresponding decrease, then increase in transverse relaxation time(T2) of the surrounding water protons. Upon addition of the different concentrations of Pb^2+ to an aq. solution of DHCA functionalized Fe/Fe3O4 nanoparticles(DHCA-Fe/Fe3O4 NPs)([Fe] = 90 mmol/L), the change of T2 values display a good linear relationship with the concentration of Pb^2+ from 40 μmol/L to 100 μmol/L and from 130 μmol/L to 200 μmol/L, respectively. Owing to the especially strong interaction between DHCA and Pb^2+, DHCA-Fe/Fe3O4 NPs exhibited a high selectivity over other metal ions.