In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and F...In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and FT-IR spectrum.The pseudo-second-order(PSO) kinetic can describe well the adsorption of Acid black 210(AB210) onto the as-obtained MC Fe/Ce of which the adsorption isotherm fits the Langmuir adsorption model better than Freundlich adsorption model.Furthermore,the maximum monolayer adsorption capacity of MC Fe/Ce is about 93 mg/g,which is 6 times more than that of commercial CeO2 for AB210.Moreover,the removal rate of the adsorbates for AB210 is 82.3% after first adsorption and still about 70% the fourth forth adsorption experiments within 120 min,which demonstrates that the obtained MC Fe/Ce has outstanding adsorption capacity and good stability.Additionally,the composite can be easily separated from aqueous solution in a few seconds with an external magnetic field due to its magnetic property,which is vital and has potential for its practical applications.展开更多
To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL...To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 magnetic composite material was successfully synthesized via the one-pot method.Preparation conditions were optimized and structural characterization of this material conducted using FTIR,SEM,EDS,XRD and Hysteresis analysis.The results show that this composite exhibits a more rapid fluoride adsorption dynamics and a higher fluoride adsorption capacity(18.34 mg/g)and its adsorption behavior fitted for the first order dynamic model and the Freundlich isotherm model.The adsorption of fluorine by this composite is mainly physical adsorption according to the mean adsorption energy(1.216 kJ/mol).The interfering ions co-existed in fluoride-containing solutions,like HCO_(3)^(-),NO^(-)and Cl^(-),have a significant effect on fluorine adsorption.This composite has also been proved with magnetism,higher adsorption selectivity and satisfactory reusability.When this composite is employed as an adsorbent for adsorption removing fluoride in zinc sulfate electrolyte,it exhibits higher pH-dependent behavior as well as high fluoride removal efficiency at pH 6.5.展开更多
Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticl...Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticles were characterized using a variety of techniques, including Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). These characterizations confirmed the successful formation of Fe3O4 nanoparticles. The FTIR spectra identified characteristic peaks corresponding to the functional groups present, and XRD analysis, using Scherer’s equation, determined an average crystalline size of 1.2 nm for the Fe3O4 nanoparticles. TGA results demonstrated the thermal stability of the nanoparticles, SEM imaging revealed distinct honeycomb-like structures for the nanoparticles synthesized with water as the solvent, while the VSM analysis was used to determine the magnetic behavior of the nanoparticles.展开更多
Regulating the orbital spin-electron filling of metal centers via interatomic electron transfer in transition metal oxides is one promising approach to enhancing their electrocatalytic oxygen evolution reaction(OER)pe...Regulating the orbital spin-electron filling of metal centers via interatomic electron transfer in transition metal oxides is one promising approach to enhancing their electrocatalytic oxygen evolution reaction(OER)performances,while it is still a challenge due to lacking of efficient strategy and deep understanding.In this work,a facile strategy containing electrochemical deposition and annealing in air atmosphere has been proposed to introduce monodispersed neodymium(Nd)atoms into spinel Co_(3)O_(4)nanosheets to trigger the electron transfer.Accordingly,the as-prepared Nd doped Co_(3)O_(4)nanosheets(Nd/Co_(3)O_(4))on nickel foam or carbon cloth showed greatly enhanced OER performances,with low overpotential of 284 and 396 mV at 10 m A cm^(-2),small Tafel slope of 95 and 119 mV dec^(-1)in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.The experimental and density function theory results coherently indicate that the charge transfer in the Nd-O-Co asymmetric configuration not only enhances the conductivity of Co_(3)O_(4),but also regulates the filling degree of egorbitals of Co,leading to higher spin states,optimized adsorption ability,and accelerated H_(2)O dissociation process,thus achieving boosted OER activity.展开更多
采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fen...采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE具有较好的去除效果:在初始pH=3,温度50℃,H_2O_2浓度30 mmol·L-1和Fe3O4/CeO_2投加量0.5 mg·L-1时,TCE去除率高达97.29%.同时实验结果表明pH在2~7范围内对TCE均有降解效果,所以相对于传统Fenton体系,该体系拥有更宽pH应用范围.目标污染物的降解符合一级动力学,反应活化能为30.77 k J·mol-1,表明反应易于进行.展开更多
基金Project supported by the Capacity Building Program of Shanghai Local Universities(12160503600)
文摘In this paper,magnetic composite Fe3 O4/CeO2(MC Fe/Ce) was synthesized via CeO2 covered onto the surface of Fe3O4 by sol-precipitation method.The as-synthesized samples were characterized by FE-SEM,XRD,SEM-EDS and FT-IR spectrum.The pseudo-second-order(PSO) kinetic can describe well the adsorption of Acid black 210(AB210) onto the as-obtained MC Fe/Ce of which the adsorption isotherm fits the Langmuir adsorption model better than Freundlich adsorption model.Furthermore,the maximum monolayer adsorption capacity of MC Fe/Ce is about 93 mg/g,which is 6 times more than that of commercial CeO2 for AB210.Moreover,the removal rate of the adsorbates for AB210 is 82.3% after first adsorption and still about 70% the fourth forth adsorption experiments within 120 min,which demonstrates that the obtained MC Fe/Ce has outstanding adsorption capacity and good stability.Additionally,the composite can be easily separated from aqueous solution in a few seconds with an external magnetic field due to its magnetic property,which is vital and has potential for its practical applications.
基金National Natural Science Foundation of China(21865011)2024 Innovation and Entrepreneurship Project of College Student in Jishou University(JDCX20241122)。
文摘To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 magnetic composite material was successfully synthesized via the one-pot method.Preparation conditions were optimized and structural characterization of this material conducted using FTIR,SEM,EDS,XRD and Hysteresis analysis.The results show that this composite exhibits a more rapid fluoride adsorption dynamics and a higher fluoride adsorption capacity(18.34 mg/g)and its adsorption behavior fitted for the first order dynamic model and the Freundlich isotherm model.The adsorption of fluorine by this composite is mainly physical adsorption according to the mean adsorption energy(1.216 kJ/mol).The interfering ions co-existed in fluoride-containing solutions,like HCO_(3)^(-),NO^(-)and Cl^(-),have a significant effect on fluorine adsorption.This composite has also been proved with magnetism,higher adsorption selectivity and satisfactory reusability.When this composite is employed as an adsorbent for adsorption removing fluoride in zinc sulfate electrolyte,it exhibits higher pH-dependent behavior as well as high fluoride removal efficiency at pH 6.5.
文摘Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticles were characterized using a variety of techniques, including Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). These characterizations confirmed the successful formation of Fe3O4 nanoparticles. The FTIR spectra identified characteristic peaks corresponding to the functional groups present, and XRD analysis, using Scherer’s equation, determined an average crystalline size of 1.2 nm for the Fe3O4 nanoparticles. TGA results demonstrated the thermal stability of the nanoparticles, SEM imaging revealed distinct honeycomb-like structures for the nanoparticles synthesized with water as the solvent, while the VSM analysis was used to determine the magnetic behavior of the nanoparticles.
基金support from the Natural Science Foundation and Overseas Talent Projects of Jiangxi Province(20242BAB25217,20232BAB214025,20232BCJ25044)the Jiangxi Provincial Natural Science Foundation(20232BAB204088)the National Natural Science Foundation of China(52402132)。
文摘Regulating the orbital spin-electron filling of metal centers via interatomic electron transfer in transition metal oxides is one promising approach to enhancing their electrocatalytic oxygen evolution reaction(OER)performances,while it is still a challenge due to lacking of efficient strategy and deep understanding.In this work,a facile strategy containing electrochemical deposition and annealing in air atmosphere has been proposed to introduce monodispersed neodymium(Nd)atoms into spinel Co_(3)O_(4)nanosheets to trigger the electron transfer.Accordingly,the as-prepared Nd doped Co_(3)O_(4)nanosheets(Nd/Co_(3)O_(4))on nickel foam or carbon cloth showed greatly enhanced OER performances,with low overpotential of 284 and 396 mV at 10 m A cm^(-2),small Tafel slope of 95 and 119 mV dec^(-1)in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.The experimental and density function theory results coherently indicate that the charge transfer in the Nd-O-Co asymmetric configuration not only enhances the conductivity of Co_(3)O_(4),but also regulates the filling degree of egorbitals of Co,leading to higher spin states,optimized adsorption ability,and accelerated H_(2)O dissociation process,thus achieving boosted OER activity.
文摘采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE具有较好的去除效果:在初始pH=3,温度50℃,H_2O_2浓度30 mmol·L-1和Fe3O4/CeO_2投加量0.5 mg·L-1时,TCE去除率高达97.29%.同时实验结果表明pH在2~7范围内对TCE均有降解效果,所以相对于传统Fenton体系,该体系拥有更宽pH应用范围.目标污染物的降解符合一级动力学,反应活化能为30.77 k J·mol-1,表明反应易于进行.