To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL...To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 magnetic composite material was successfully synthesized via the one-pot method.Preparation conditions were optimized and structural characterization of this material conducted using FTIR,SEM,EDS,XRD and Hysteresis analysis.The results show that this composite exhibits a more rapid fluoride adsorption dynamics and a higher fluoride adsorption capacity(18.34 mg/g)and its adsorption behavior fitted for the first order dynamic model and the Freundlich isotherm model.The adsorption of fluorine by this composite is mainly physical adsorption according to the mean adsorption energy(1.216 kJ/mol).The interfering ions co-existed in fluoride-containing solutions,like HCO_(3)^(-),NO^(-)and Cl^(-),have a significant effect on fluorine adsorption.This composite has also been proved with magnetism,higher adsorption selectivity and satisfactory reusability.When this composite is employed as an adsorbent for adsorption removing fluoride in zinc sulfate electrolyte,it exhibits higher pH-dependent behavior as well as high fluoride removal efficiency at pH 6.5.展开更多
A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was stu...A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was studied. Incorporation of Co species into the Fe3O4-Mn catalyst promoted the reduction of iron oxides, increasing iron active sites during FTS. Moreover, the adding of Co species enhanced the electron transfer from Fe to Co metal, which strengthened the synergistic effect of Fe-Co, improving the catalytic performance. The Fe1CoxMn1 catalyst with higher Co loading promoted further the hydrogenation ability, favoring the shifting of the product distribution towards shorter hydrocarbons. Under optimized conditions of 280℃, 2.0 MPa and 3000 h-1, the highest yield of liquid fuels was obtained for the Fe1Co1Mn1 catalyst.展开更多
基金National Natural Science Foundation of China(21865011)2024 Innovation and Entrepreneurship Project of College Student in Jishou University(JDCX20241122)。
文摘To remove the fluoride in zinc sulfate electrolyte to an appropriate level,mitigate environmental fluoride pollution,and drive the development of the hydrometallurgy industry of zinc,a novel Fe_(3)O_(4)@SiO_(2)@Fe-MIL-101 magnetic composite material was successfully synthesized via the one-pot method.Preparation conditions were optimized and structural characterization of this material conducted using FTIR,SEM,EDS,XRD and Hysteresis analysis.The results show that this composite exhibits a more rapid fluoride adsorption dynamics and a higher fluoride adsorption capacity(18.34 mg/g)and its adsorption behavior fitted for the first order dynamic model and the Freundlich isotherm model.The adsorption of fluorine by this composite is mainly physical adsorption according to the mean adsorption energy(1.216 kJ/mol).The interfering ions co-existed in fluoride-containing solutions,like HCO_(3)^(-),NO^(-)and Cl^(-),have a significant effect on fluorine adsorption.This composite has also been proved with magnetism,higher adsorption selectivity and satisfactory reusability.When this composite is employed as an adsorbent for adsorption removing fluoride in zinc sulfate electrolyte,it exhibits higher pH-dependent behavior as well as high fluoride removal efficiency at pH 6.5.
基金supported by International Cooperation and Exchange Program of the National Natural Science Foundation of China(No.51861145102)Science and Technology Program of Shenzhen(No.JCYJ20180302153928437)Fundamental Research Fund for the Central Universities(No.2042019kf0221)
文摘A bifunctional Co modified Fe3O4-Mn catalyst was prepared for Fischer-Tropsch synthesis (FTS). The influence of Co loading on the synergistic effect of Fe-Co as well as FTS performance over Fe1CoxMn1 catalysts was studied. Incorporation of Co species into the Fe3O4-Mn catalyst promoted the reduction of iron oxides, increasing iron active sites during FTS. Moreover, the adding of Co species enhanced the electron transfer from Fe to Co metal, which strengthened the synergistic effect of Fe-Co, improving the catalytic performance. The Fe1CoxMn1 catalyst with higher Co loading promoted further the hydrogenation ability, favoring the shifting of the product distribution towards shorter hydrocarbons. Under optimized conditions of 280℃, 2.0 MPa and 3000 h-1, the highest yield of liquid fuels was obtained for the Fe1Co1Mn1 catalyst.