Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif...Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.展开更多
以硝酸铝和尿素为原料,通过水热法成功合成富含五配位Al^(3+)的γ-Al_(2)O_(3)载体,采用XRD、SEM、STEM-HAADF、27Al MAS NMR、N_(2)吸附-脱附等手段表征了载体的物理化学性质,并对采用该载体制备的Pd/Al_(2)O_(3)催化剂进行了蒽醌加氢...以硝酸铝和尿素为原料,通过水热法成功合成富含五配位Al^(3+)的γ-Al_(2)O_(3)载体,采用XRD、SEM、STEM-HAADF、27Al MAS NMR、N_(2)吸附-脱附等手段表征了载体的物理化学性质,并对采用该载体制备的Pd/Al_(2)O_(3)催化剂进行了蒽醌加氢制H_(2)O_(2)的初步性能评价。表征结果显示,合成的载体中的五配位Al^(3+)相对含量可达40.88%(w),微观粒子呈棒状,棒的长度1~4μm,直径0.1~0.3μm,BET比表面积可达494 m^(2)/g;所制备的Pd/Al_(2)O_(3)催化剂中Pd纳米粒子分散良好,平均粒径为3.51 nm,且分布较窄。评价结果表明,该催化剂相对于参比剂具有较高的加氢活性。展开更多
The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as ...The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.展开更多
Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoc...Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoculant containing in-situ formed Al_(2)O_(3) and Al3Zr particles was designed and used to reinforce the ZA22 alloy.The microstructure of the ZA22 alloy was significantly refined.Fine Al_(2)O_(3) particles were uniformly distributed in theαphase and the lamellar eutectoid structure,whereas Al3Zr particles were distributed in theαphase and at theα/ηinterface.Property tests showed that the tensile mechanical properties of the reinforced ZA22 alloys were significantly improved.The maximum tensile strength and elongation reached 355 MPa and 7.62%,which were 1.50 and 1.89 times those of the original ZA22 alloy,respectively.The increase in mechanical properties is attributed to the multiple strengthening and toughening factors constructed in the refined microstructure.展开更多
An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particle...An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particles,including nano-sizedθ’and T(Al_(20)Cu_(2)Mn_(3))particles after T6 heat treatment,as well as in-situ synthesized nano-sizedγ-Al_(2)O_(3)particles.Tensile tests of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite and the Al-4Cu-0.5Mn base alloy after T6 treatment were carried out at room temperature and elevated temperatures(200°C,300°C,and 400°C).Compared with the base alloy,the yield strength of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite after T6 treatment increases significantly from 187 MPa to 263 MPa at room temperature.Simultaneously,at elevated temperatures,the yield strength is also enhanced,with a yield strength of 52 MPa at 400°C for this composite.The in-situ fabricatedγ-Al_(2)O_(3)particles,mainly distributed along the grain boundaries,are supposed to play the main strengthening role,especially at high temperatures.This work acts as a reference for designing composites for high-temperature applications.展开更多
The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isotherma...The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isothermal aging with considering the influence of alloying elements was investigated.The results show that the coarsening rate of L1_(2)-Ni_(3)Al precipitates increases with co-additions of Ni and Cu,and especially,the increase of Cu content promotes the nucleation of L1_(2)-Ni_(3)Al precipitates.A dynamic competition exists between Lifshitz-Slyozov-Wagner theory and transient interface diffusion-controlled theory for coarsening behavior of L1_(2)-Ni_(3)Al precipitates with duration of isothermal aging.Additionally,the transition from L1_(2)-Ni_(3)Al precipitates to B2-NiAl precipitates during isothermal aging results in the formation of a depleted zone of L1_(2)-Ni_(3)Al precipitates around B2-NiAl precipitates,which inhibits the growth of L1_(2)-Ni_(3)Al precipitates.The coarsening of L1_(2)-Ni_(3)Al precipitates significantly contributes to the yield strength of AFA steels.展开更多
β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy ...β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy on the in-situ synthesis of β-Sialon within Al_(2)O_(3)-C refractory materials,as well as its oxidation behavior,was investigated.The findings indicate that the presence of Al/Si alloy promotes the formation of AlN and SiC whiskers at 1300℃,which subsequently facilitate the production of plate-like β-Sialon at 1500℃.Density functional theory analysis reveals that the(020)crystal plane of β-Sialon exhibits the lowest adsorption energy for Al2O and AlO molecules under the influence of iron atoms,suggesting a solid-liquid-vapor growth mechanism for β-Sialon formation.The introduction of these ceramic phases significantly enhances the mechanical properties of Al_(2)O_(3)-C refractories.Specifically,the addition of 6 wt.%Al/Si alloy yielded specimens with the highest cold modulus of rupture and cold crushing strength at 1500℃,achieving values of 35.2 and 127.5 MPa,respectively--representing increases of 40.1%and 37.4%.Furthermore,during high-temperature oxidation,the formation of plate-like β-Sialon leads to the development of a dense protective layer on the surface.This impedes the diffusion pathways of oxygen and consequently enhances the oxidation resistance of the refractory.展开更多
A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PT...A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52105373)the China Scholarship Council(No.202106020094).
文摘Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.
文摘以硝酸铝和尿素为原料,通过水热法成功合成富含五配位Al^(3+)的γ-Al_(2)O_(3)载体,采用XRD、SEM、STEM-HAADF、27Al MAS NMR、N_(2)吸附-脱附等手段表征了载体的物理化学性质,并对采用该载体制备的Pd/Al_(2)O_(3)催化剂进行了蒽醌加氢制H_(2)O_(2)的初步性能评价。表征结果显示,合成的载体中的五配位Al^(3+)相对含量可达40.88%(w),微观粒子呈棒状,棒的长度1~4μm,直径0.1~0.3μm,BET比表面积可达494 m^(2)/g;所制备的Pd/Al_(2)O_(3)催化剂中Pd纳米粒子分散良好,平均粒径为3.51 nm,且分布较窄。评价结果表明,该催化剂相对于参比剂具有较高的加氢活性。
基金the financial support from the 261Project of MIIT and Natural Science Foundation of Jiangsu Province(No.BK20240179)。
文摘The ineluctable introduction of lithium salt to polymer solid-state electrolytes incurs a compromise between strength,ionic conductivity,and thickness.Here,we propose Al_(2)O_(3)-coated polyimide(AO/PI)porous film as a high-strength substrate to support fast-ion-conducting polymer-in-salt(PIS)solid-state electrolytes,aiming to suppress lithium dendrite growth and improve full-cell performance.The Al_(2)O_(3)coating layer not only refines the wettability of polyimide porous film to PIS,but also performs as a high modulus protective layer to suppress the growth of lithium dendrites.The resulting PI/AO@PIS exhibits a small thickness of only 35μm with an outstanding tensile strength of 11.3 MPa and Young's modulus of 537.6 MPa.In addition,the PI/AO@PIS delivers a high ionic conductivity of 0.1 m S/cm at 25°C.As a result,the PI/AO@PIS enables symmetric Li cells to achieve exceptional cyclability for over 1000 h at 0.1 m A/cm2without noticeable lithium dendrite formation.Moreover,the PI/AO@PIS-based LiFePO4||Li full cells demonstrate outstanding rate performance(125.7 m Ah/g at 5 C)and impressive cycling stability(96.1%capacity retention at 1 C after 200 cycles).This work highlights the efficacy of enhancing the mechanical properties of polymer matrices and extending cell performance through the incorporation of a dense inorganic interface layer.
基金supported by the Foundation Strengthening Program of China(No.2019-JCJQ-ZD-142-00)the Natural Science Foundation of Hebei Province,China(No.E2021202017)the Foundation of Guangdong Academy of Sciences,China(No.2021GDASYL-20210102002)。
文摘Zn-Al eutectoid alloy(ZA22)has ultra-high damping property,but its mechanical properties are still relatively low.In order to simultaneously improve the tensile strength and plasticity,a novel Al matrix composite inoculant containing in-situ formed Al_(2)O_(3) and Al3Zr particles was designed and used to reinforce the ZA22 alloy.The microstructure of the ZA22 alloy was significantly refined.Fine Al_(2)O_(3) particles were uniformly distributed in theαphase and the lamellar eutectoid structure,whereas Al3Zr particles were distributed in theαphase and at theα/ηinterface.Property tests showed that the tensile mechanical properties of the reinforced ZA22 alloys were significantly improved.The maximum tensile strength and elongation reached 355 MPa and 7.62%,which were 1.50 and 1.89 times those of the original ZA22 alloy,respectively.The increase in mechanical properties is attributed to the multiple strengthening and toughening factors constructed in the refined microstructure.
基金supported by the National Natural Science Foundation of China(No.52471040)the Natural Science Foundation of Shandong Province(No.ZR2022ME005).
文摘An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particles,including nano-sizedθ’and T(Al_(20)Cu_(2)Mn_(3))particles after T6 heat treatment,as well as in-situ synthesized nano-sizedγ-Al_(2)O_(3)particles.Tensile tests of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite and the Al-4Cu-0.5Mn base alloy after T6 treatment were carried out at room temperature and elevated temperatures(200°C,300°C,and 400°C).Compared with the base alloy,the yield strength of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite after T6 treatment increases significantly from 187 MPa to 263 MPa at room temperature.Simultaneously,at elevated temperatures,the yield strength is also enhanced,with a yield strength of 52 MPa at 400°C for this composite.The in-situ fabricatedγ-Al_(2)O_(3)particles,mainly distributed along the grain boundaries,are supposed to play the main strengthening role,especially at high temperatures.This work acts as a reference for designing composites for high-temperature applications.
基金financial supports from the National Natural Science Foundation of China(Nos.52471004,52171107,52201203)the Industry-University-Research Cooperation Project of Hebei Based Universities and Shijiazhuang City(No.241791237A)the Fundamental Research Funds for the Central Universities(No.N2423030)。
文摘The nano-scale L1_(2)-Ni_(3)Al precipitates significantly contribute to thermal stability of alumina-forming austenitic(AFA)steels.The coarsening behavior of L1_(2)-Ni_(3)Al precipitates in AFA steels during isothermal aging with considering the influence of alloying elements was investigated.The results show that the coarsening rate of L1_(2)-Ni_(3)Al precipitates increases with co-additions of Ni and Cu,and especially,the increase of Cu content promotes the nucleation of L1_(2)-Ni_(3)Al precipitates.A dynamic competition exists between Lifshitz-Slyozov-Wagner theory and transient interface diffusion-controlled theory for coarsening behavior of L1_(2)-Ni_(3)Al precipitates with duration of isothermal aging.Additionally,the transition from L1_(2)-Ni_(3)Al precipitates to B2-NiAl precipitates during isothermal aging results in the formation of a depleted zone of L1_(2)-Ni_(3)Al precipitates around B2-NiAl precipitates,which inhibits the growth of L1_(2)-Ni_(3)Al precipitates.The coarsening of L1_(2)-Ni_(3)Al precipitates significantly contributes to the yield strength of AFA steels.
基金supported by the Natural Science Foundation of Henan Province(No.232300420329)Key Scientific Research Project of Colleges and Universities in Henan Province(Nos.23B430012,22A430028,and 25B430022)+2 种基金Henan Provincial Science and Technology Research Project(No.242102231064)National Natural Science Foundation of China(No.52202064)Luoyang Major Science and Technology Innovation Project(No.2301009A).
文摘β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy on the in-situ synthesis of β-Sialon within Al_(2)O_(3)-C refractory materials,as well as its oxidation behavior,was investigated.The findings indicate that the presence of Al/Si alloy promotes the formation of AlN and SiC whiskers at 1300℃,which subsequently facilitate the production of plate-like β-Sialon at 1500℃.Density functional theory analysis reveals that the(020)crystal plane of β-Sialon exhibits the lowest adsorption energy for Al2O and AlO molecules under the influence of iron atoms,suggesting a solid-liquid-vapor growth mechanism for β-Sialon formation.The introduction of these ceramic phases significantly enhances the mechanical properties of Al_(2)O_(3)-C refractories.Specifically,the addition of 6 wt.%Al/Si alloy yielded specimens with the highest cold modulus of rupture and cold crushing strength at 1500℃,achieving values of 35.2 and 127.5 MPa,respectively--representing increases of 40.1%and 37.4%.Furthermore,during high-temperature oxidation,the formation of plate-like β-Sialon leads to the development of a dense protective layer on the surface.This impedes the diffusion pathways of oxygen and consequently enhances the oxidation resistance of the refractory.
基金the National Natural Science Foundation of China (Grant No.12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (Grant No.QNKT22-09)。
文摘A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.