MnO2-impregnated carbon-coated Fe3 O4(Fe3O4/C/MnO2)nanocomposites with a good core-shell structure were prepared by direct oxidation of carbon-coated Fe3 O4(Fe3O4/C)microspheres with KMnO4 in alkaline solution and app...MnO2-impregnated carbon-coated Fe3 O4(Fe3O4/C/MnO2)nanocomposites with a good core-shell structure were prepared by direct oxidation of carbon-coated Fe3 O4(Fe3O4/C)microspheres with KMnO4 in alkaline solution and applied to adsorb bovine serum albumin(BSA).X-ray diffraction(XRD),transmission electron microscope(TEM),Fourier transform infrared spectrometer(FTIR),vibrating sample magnetometer(VSM)and thermogravimetric analyzer(TGA)tests show that Fe3O4/C microspheres were newly functionalized via the oxidation by KMnO4.Fe3O4/C/MnO2 nanocomposites exhibit a higher adsorption capacity for BSA than Fe3O4/C microspheres and the maximum adsorption of BSA on them occurs at pH 4.7,which is the isoelectric point of BSA.Langmuir isotherm model describes the adsorption of BSA better than Freundlich model and Temkin model,and the kinetics data fit well with the pseudo-second-order model.展开更多
Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticl...Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticles having a crystallite size of 20 nm were obtained by controlling the ratio of Fe(II) and Fe(III) precursors.In the second step,Fe3O4 particles were embedded in SiO2 matrix by the hydrolysis and subsequent condensation of the silicic acid solution containing Fe3O4 particles.It was found that the Fe3O4 nanoparticles homogenously disperse in the SiO2 matrix.The Fe3O4:SiO2 nanocomposite exhibited an enhanced thermal stability against oxidation compared with pure Fe3O4.FT-IR analysis indicates the presence of the Si-O-Fe bond in the Fe3O4:SiO2 (1:10,mole fraction) nanocomposite.展开更多
基金financially supported by the National Science and Technology Major Project of China for Water Pollution Control and Treatment(No.2013ZX07202-010)。
文摘MnO2-impregnated carbon-coated Fe3 O4(Fe3O4/C/MnO2)nanocomposites with a good core-shell structure were prepared by direct oxidation of carbon-coated Fe3 O4(Fe3O4/C)microspheres with KMnO4 in alkaline solution and applied to adsorb bovine serum albumin(BSA).X-ray diffraction(XRD),transmission electron microscope(TEM),Fourier transform infrared spectrometer(FTIR),vibrating sample magnetometer(VSM)and thermogravimetric analyzer(TGA)tests show that Fe3O4/C microspheres were newly functionalized via the oxidation by KMnO4.Fe3O4/C/MnO2 nanocomposites exhibit a higher adsorption capacity for BSA than Fe3O4/C microspheres and the maximum adsorption of BSA on them occurs at pH 4.7,which is the isoelectric point of BSA.Langmuir isotherm model describes the adsorption of BSA better than Freundlich model and Temkin model,and the kinetics data fit well with the pseudo-second-order model.
基金Project(2011-0015512)supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(MEST)
文摘Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticles having a crystallite size of 20 nm were obtained by controlling the ratio of Fe(II) and Fe(III) precursors.In the second step,Fe3O4 particles were embedded in SiO2 matrix by the hydrolysis and subsequent condensation of the silicic acid solution containing Fe3O4 particles.It was found that the Fe3O4 nanoparticles homogenously disperse in the SiO2 matrix.The Fe3O4:SiO2 nanocomposite exhibited an enhanced thermal stability against oxidation compared with pure Fe3O4.FT-IR analysis indicates the presence of the Si-O-Fe bond in the Fe3O4:SiO2 (1:10,mole fraction) nanocomposite.