Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticl...Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticles were characterized using a variety of techniques, including Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). These characterizations confirmed the successful formation of Fe3O4 nanoparticles. The FTIR spectra identified characteristic peaks corresponding to the functional groups present, and XRD analysis, using Scherer’s equation, determined an average crystalline size of 1.2 nm for the Fe3O4 nanoparticles. TGA results demonstrated the thermal stability of the nanoparticles, SEM imaging revealed distinct honeycomb-like structures for the nanoparticles synthesized with water as the solvent, while the VSM analysis was used to determine the magnetic behavior of the nanoparticles.展开更多
Regulating the orbital spin-electron filling of metal centers via interatomic electron transfer in transition metal oxides is one promising approach to enhancing their electrocatalytic oxygen evolution reaction(OER)pe...Regulating the orbital spin-electron filling of metal centers via interatomic electron transfer in transition metal oxides is one promising approach to enhancing their electrocatalytic oxygen evolution reaction(OER)performances,while it is still a challenge due to lacking of efficient strategy and deep understanding.In this work,a facile strategy containing electrochemical deposition and annealing in air atmosphere has been proposed to introduce monodispersed neodymium(Nd)atoms into spinel Co_(3)O_(4)nanosheets to trigger the electron transfer.Accordingly,the as-prepared Nd doped Co_(3)O_(4)nanosheets(Nd/Co_(3)O_(4))on nickel foam or carbon cloth showed greatly enhanced OER performances,with low overpotential of 284 and 396 mV at 10 m A cm^(-2),small Tafel slope of 95 and 119 mV dec^(-1)in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.The experimental and density function theory results coherently indicate that the charge transfer in the Nd-O-Co asymmetric configuration not only enhances the conductivity of Co_(3)O_(4),but also regulates the filling degree of egorbitals of Co,leading to higher spin states,optimized adsorption ability,and accelerated H_(2)O dissociation process,thus achieving boosted OER activity.展开更多
文摘Ferromagnetic Fe3O4 nanoparticles were synthesized using water as the solvent through the sol-gel method, which was selected for its cost-effectiveness, simplicity, and eco-friendly nature. The synthesized nanoparticles were characterized using a variety of techniques, including Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). These characterizations confirmed the successful formation of Fe3O4 nanoparticles. The FTIR spectra identified characteristic peaks corresponding to the functional groups present, and XRD analysis, using Scherer’s equation, determined an average crystalline size of 1.2 nm for the Fe3O4 nanoparticles. TGA results demonstrated the thermal stability of the nanoparticles, SEM imaging revealed distinct honeycomb-like structures for the nanoparticles synthesized with water as the solvent, while the VSM analysis was used to determine the magnetic behavior of the nanoparticles.
基金support from the Natural Science Foundation and Overseas Talent Projects of Jiangxi Province(20242BAB25217,20232BAB214025,20232BCJ25044)the Jiangxi Provincial Natural Science Foundation(20232BAB204088)the National Natural Science Foundation of China(52402132)。
文摘Regulating the orbital spin-electron filling of metal centers via interatomic electron transfer in transition metal oxides is one promising approach to enhancing their electrocatalytic oxygen evolution reaction(OER)performances,while it is still a challenge due to lacking of efficient strategy and deep understanding.In this work,a facile strategy containing electrochemical deposition and annealing in air atmosphere has been proposed to introduce monodispersed neodymium(Nd)atoms into spinel Co_(3)O_(4)nanosheets to trigger the electron transfer.Accordingly,the as-prepared Nd doped Co_(3)O_(4)nanosheets(Nd/Co_(3)O_(4))on nickel foam or carbon cloth showed greatly enhanced OER performances,with low overpotential of 284 and 396 mV at 10 m A cm^(-2),small Tafel slope of 95 and 119 mV dec^(-1)in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.The experimental and density function theory results coherently indicate that the charge transfer in the Nd-O-Co asymmetric configuration not only enhances the conductivity of Co_(3)O_(4),but also regulates the filling degree of egorbitals of Co,leading to higher spin states,optimized adsorption ability,and accelerated H_(2)O dissociation process,thus achieving boosted OER activity.
基金The project was supported by the National Natural Science Foundation of China(21163016,21174114)Gansu Provincial Natural Science Foundation,China(1010RJZA024)Scientific Research Fund of Northwest Normal University,China(NWNU-KJCXGC-03-63)~~