The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray d...The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.展开更多
High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based...High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics have been investigated.The Bi2O3 ,acting as a sintering additive,can effectively lower the sintering temperature of BaTiO3-based ceramics from 1300 to 1130 °C.The bulk density of BaTiO3-based ceramics increased and reached the maximum value with increasingBi2O3 content.The dielectric constant increased with increasingBi2O3 until it reached the maximum value with 0.8 mol%Bi2O3 additive,and the dielectric loss decreased with increasingBi2O3 content.Optimal dielectric properties of ε=2470,tanδ=0.011 and △ε/ε 25 ≤±9%(-55-150 °C) were obtained for the BaTiO3-based ceramics doped with 0.8 mol%Bi2O3 sintered at 1130 °C for 6 h.展开更多
We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, esti...We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, estimated from x-ray diffraction (XRD) measurements. We found that the pressure should be 700 kgf/cm2 at least in order to suppress the BaCuO2 phase.展开更多
The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave ...The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave dielectric properties of Li2ZnTi3O8 ceramics with the addition of V2O5 were investigated. Based on our research, V2O5 doping effectively promoted the densification of Li2ZnTi3O8 ceramics at about 900°C, without affecting the main crystal phase of the ceramics. Li2ZnTi3O8 ceramics with 0.5 wt% V2O5 doping (sintered at 900°C) exhibited the best microwave dielectric properties (Qf =?22,400 GHz at about 6 GHz, εr = 25.5, and τf = -10.8 ppm/°C). The V2O5-doped Li2ZnTi3O8 ceramics were well cofired with Ag inner paste without cracks and diffusion, indicating its significant potential for LTCC applications.展开更多
基金Project (11KJB430007) supported by the University Natural Science Research Program of Jiangsu Province, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.
基金supported by the Tianjin Natural Science Foundation, China (Grant No. 06YFJMJC01000)
文摘High performance X8R dielectric ceramics were prepared by dopingBi2O3 to BaTiO3-based ceramics.The effect of small amounts(≤1.2 mol%) ofBi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics have been investigated.The Bi2O3 ,acting as a sintering additive,can effectively lower the sintering temperature of BaTiO3-based ceramics from 1300 to 1130 °C.The bulk density of BaTiO3-based ceramics increased and reached the maximum value with increasingBi2O3 content.The dielectric constant increased with increasingBi2O3 until it reached the maximum value with 0.8 mol%Bi2O3 additive,and the dielectric loss decreased with increasingBi2O3 content.Optimal dielectric properties of ε=2470,tanδ=0.011 and △ε/ε 25 ≤±9%(-55-150 °C) were obtained for the BaTiO3-based ceramics doped with 0.8 mol%Bi2O3 sintered at 1130 °C for 6 h.
文摘We fabricated YBa2Cu3O7–d bulk ceramics with a domestic microwave oven and investigated the effect of pressure at the press procedure. If the pressure was not high enough, the ratio of BaCuO2 phase became large, estimated from x-ray diffraction (XRD) measurements. We found that the pressure should be 700 kgf/cm2 at least in order to suppress the BaCuO2 phase.
文摘The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave dielectric properties of Li2ZnTi3O8 ceramics with the addition of V2O5 were investigated. Based on our research, V2O5 doping effectively promoted the densification of Li2ZnTi3O8 ceramics at about 900°C, without affecting the main crystal phase of the ceramics. Li2ZnTi3O8 ceramics with 0.5 wt% V2O5 doping (sintered at 900°C) exhibited the best microwave dielectric properties (Qf =?22,400 GHz at about 6 GHz, εr = 25.5, and τf = -10.8 ppm/°C). The V2O5-doped Li2ZnTi3O8 ceramics were well cofired with Ag inner paste without cracks and diffusion, indicating its significant potential for LTCC applications.
基金supported by the National Natural Science Foundation of China(20976162,21103149,20906079)Natural Science Foundation of Zhejiang Province,China(R5100266)Significant Science and Technology Project of Zhejiang Province,China(2010C13001)~~