A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c...A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.展开更多
The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied compara...In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.展开更多
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz...A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.展开更多
A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonate...A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.展开更多
Ce-Zr-Al-Nd2O3 (CZAN) support materials were prepared by co-precipitation and impregnation methods, respectively. They were characterized by X-ray diffTaction (XRD), low temperature nitrogen adsorption-desorption,...Ce-Zr-Al-Nd2O3 (CZAN) support materials were prepared by co-precipitation and impregnation methods, respectively. They were characterized by X-ray diffTaction (XRD), low temperature nitrogen adsorption-desorption, oxygen pulsing technique, H2-temperamre programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The Pd-only three-way catalysts (Pd-TWC) supported on these materials were prepared by incipient wetness method and studied by activity tests. The results demonstrated that the CZAN supports obtained by the two methods showed better structural, textural and redox properties than the CZA without Nd2O3, and the addition of Nd203 improved the catalytic activity of TWC. Especially, the CZAN-i support prepared by impregnation method had better thermal stability and redox property. Meanwhile, the Pd/CZAN-i catalyst exhibited the best catalytic performance. XPS measurements indicated that the Nd-modified samples possessed more Ce3+ and oxygen vacancies on the surface of samples, which led to a better redox property. The excellent redox property of support materials helped to improve the catalytic activity of TWC.展开更多
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences ...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.展开更多
The catalytic behaviors of Pd (1.4 wt.%) catalysts supported on CeO2-ZrO2 promoted with La2O3 were investigated for methanol decomposition. The measurements of inductively coupled plasma emission spectroscopy (ICP...The catalytic behaviors of Pd (1.4 wt.%) catalysts supported on CeO2-ZrO2 promoted with La2O3 were investigated for methanol decomposition. The measurements of inductively coupled plasma emission spectroscopy (ICP), N2 adsorption-desorption (BET), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and oxygen storage capacity (OSC) were used to characterize the properties of catalysts. The catalysts' activities were tested in a fixed bed continuous flow reactor operating under atmospheric pressure. The Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 catalyst exhibited the best activity. The reasons for this were twofold: (1) doping of La improved effectively textural properties of CeO2-ZrO2 oxygen storage materials, and (2) Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 possessed super oxygen storage property and reducibility due to the existence of lattice defect oxygen or mobile oxygen, which helped to re-oxidize zerovalent Pd0 to a partly oxidized Pdδ+. By introducing 5 wt.%La2O3, the specific surface area of the sample increased, but declined if further increasing the content of La2O3 to 10 wt.%.展开更多
A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in...A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in liquid phases to Fe2 P and Fe P.It was found that the iron sulfides(Fe0.96 S and Fe_3S_4) exhibited the low activity for the hydrodesulfurization(HDS) reactions.The HDS activity was also low on the Fe(metal)/Al_2O_3 and Fe_2 P/Al_2O_3 catalysts since they were converted into Fe0.96 S and Fe_3S_4 during the HDS reactions.In contrast,the FeP/Al_2O_3 was found to be stable and active for the HDS reactions.In particular,Fe P/Al_2O_3 possessed significantly smaller Fe P particles than Fe P/C,leading to the significant higher HDS activity of FeP/Al_2O_3 than Fe P/C.展开更多
Magnetically recyclable porous sodium dodecyl sulfate(SDS)/Fe2O3 hybrids,which combine the porous structure of Fe2O3 and hydrophobicity of SDS,have been successfully synthesized for the first time.Porous Fe2O3 has bee...Magnetically recyclable porous sodium dodecyl sulfate(SDS)/Fe2O3 hybrids,which combine the porous structure of Fe2O3 and hydrophobicity of SDS,have been successfully synthesized for the first time.Porous Fe2O3 has been first pyrolyzed from MIL-100(Fe)using a simple two-step calcination route.Then,the obtained porous Fe2O3 nanoparticles have been self-assembled with SDS molecules and yielded hydrophobic SDS/Fe2O3 hybrids.The porous SDS/Fe2O3 hybrids have been demonstrated to be highly efficient for the denitrification of pyridine under visible light irradiation.The pyridine removal ratio has reached values as high as 100%after irradiation for 240 min.Combining the results of a series of experimental measurements,it was concluded that the superior photocatalytic performance of SDS/Fe2O3 hybrids could be attributed to(i)the fast electron transport owing to the unique porous structure of Fe2O3,(ii)the superior visible light absorption of Fe2O3 nanoparticles,and(iii)the“bridge molecule”role of SDS efficiently improving the separation and transfer across the interfacial domain of SDS/Fe2O3 of photogenerated electron-hole pairs.More significantly,after the catalytic reaction,the SDS/Fe2O3 hybrids could be easily recovered using magnets and reused during subsequent cycles,which indicated their stability and recyclability.展开更多
Characteristics of carbon deposition of CH 4 and C 2H 4 decomposition over supported Ni and Ni Ce catalysts were studied by using a pulse reaction as well as BET, TPR, XPS and hydrogen chemisorption techniques. It...Characteristics of carbon deposition of CH 4 and C 2H 4 decomposition over supported Ni and Ni Ce catalysts were studied by using a pulse reaction as well as BET, TPR, XPS and hydrogen chemisorption techniques. It is found that there is a metal semiconductor interaction (MScI) in the Ni Ce catalyst, and the effect of MScI on the carbon deposition of CH 4 decomposition is opposite to that of C 2H 4. A novel model of carbon deposition of CH 4 or C 2H 4 decomposition was proposed.展开更多
A series of Pd/La-Al2O3(PLA) catalysts with La-Al2O3(LA) support calcined at different temperatures(500, 700, 900 and 1050 oC) were prepared using an incipient wetness impregnation method. The activity of the fr...A series of Pd/La-Al2O3(PLA) catalysts with La-Al2O3(LA) support calcined at different temperatures(500, 700, 900 and 1050 oC) were prepared using an incipient wetness impregnation method. The activity of the fresh and hydrothermally aged PLA catalysts were tested for total oxidation of CO and C3H8. The activity of the fresh PLA catalysts for CO and C3H8 oxidation increased with increasing calcination temperature of the support, while the activities of the aged catalysts declined and became essentially the same. CO chemisorption results revealed that the suppressed activities of the aged catalysts were mainly due to the decline of palladium dispersion. The turnover frequency(TOF) of CO oxidation increased with increasing reduction ability of the catalysts, with a fresh catalyst calcined at 1050 oC having the highest value(0.048 s–1). However, the TOF of C3H8 total oxidation was affected by not only the redox properties of catalysts but also the size of Pd particle, and large Pd particles possessed higher TOF value of C3H8 oxidation, with the highest value(0.125 s–1) being obtained on an aged catalyst calcined at 500 oC.展开更多
Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via...Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via the KIT-6-templating and polyvinyl alcohol-protected reduction routes, respectively. Physical properties of the samples were characterized, and their photocatalytic activities were evaluated for the photocatalytic oxidation of acetone in the presence of a small amount of H2O2 under visible-light illumination. It was found that the meso-Fe2O3 was rhombohedral in crystal structure. The as-obtained samples displayed a high surface area of 111.0–140.8 m^2/g and a bandgap energy of 1.98–2.12 eV. The Au, Pd and/or Au–Pd alloy nanoparticles(NPs) with a size of 3–4 nm were uniformly dispersed on the surface of the meso-Fe2O3 support. The 0.72 wt.% AuP d1.48/meso-Fe2O3 sample performed the best in the presence of 0.06 mol/L H2O2 aqueous solution, showing a 100% acetone conversion within4 hr of visible-light illumination. It was concluded that the good performance of 0.72 wt.%AuPd(1.48)/meso-Fe2O3 for photocatalytic acetone oxidation was associated with its ordered mesoporous structure, high adsorbed oxygen species concentration, plasmonic resonance effect between AuPd(1.48) NPs and meso-Fe2O3, and effective separation of the photogenerated charge carriers. In addition, the introduction of H2O2 and the involvement of the photo-Fenton process also played important roles in enhancing the photocatalytic activity of 0.72 wt.%AuPd(1.48)/meso-Fe2O3.展开更多
Given the difficulties of degrading benzotriazole(BTA),this study used a one-pot hydrothermal method to prepareα-Fe_(2)O_(3)/Cu_(2)O(FC)composites for photoelectrocatalytic(PEC)degradation of BTA.The characterization...Given the difficulties of degrading benzotriazole(BTA),this study used a one-pot hydrothermal method to prepareα-Fe_(2)O_(3)/Cu_(2)O(FC)composites for photoelectrocatalytic(PEC)degradation of BTA.The characterization of FC structure showed that Cu_(2)O in cubic crystals was loaded with circular sheets of Fe_(2)O_(3).Owing to this structure,FC showed efficient PEC degradation of BTA when exposed to ultraviolet light.The experimental results demonstrated that FC efficiently degraded BTA.When the PEC degradation continued for 60 min,100%degradation of BTA was achieved because FC enhanced the photoelectron-hole separation and the separation and transfer of articulated carriers.High per-formance liquid chromatography-mass spectrometry showed that intermediates formed during the PEC degradation of BTA.Finally,various pathways for degradation of BTA were postulated.This FC-based PEC system provides a harmless and effective method for degradation of BTA.展开更多
A simple method for preparation of presulfided eggshell CoMoS/γ-Al2O3 catalysts with sharp boundary is developed, through which the eggshell thicknesses of Co and Mo could be easily regulated by controlling the impre...A simple method for preparation of presulfided eggshell CoMoS/γ-Al2O3 catalysts with sharp boundary is developed, through which the eggshell thicknesses of Co and Mo could be easily regulated by controlling the impregnation time. According to the results characterized by EDS, XRD, HRTEM and FT-IR of adsorbed CO, the active component structures, the nature and/or the amount of active sites on the eggshell catalyst are similar to these on the uniform catalyst. The evaluation results of the catalytic performance in selective hydrodesulfurization (HDS) of FCC gasoline show the presence of significant internal diffusion inhibition effect on HDS of S-compounds especially in the uniform catalyst. Compared with uniform catalyst, the eggshell catalyst could remarkably reduce such an internal diffusion inhibition effect due to a shortened diffusion path of the reactants, thus showing higher HDS activity and selectivity.展开更多
This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using ...This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60℃ and 150 min reaction time over Fe-Ni-Mo/Al2O3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al2O3 catalysts following the activity order:Fe-Ni-Mo/Al2O3 〉 Fe-Co-Mo/Al2O3 〉 Ni-Mo/Al2O3 〉 Co-Mo/Al2O3, while H2O2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Atomic Absorption Spectroscopy (AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition.展开更多
The addition of platinum over the B2O3/TiO2-ZrO2 remarkably enhanced its catalytic stability in the vapor phase Beckmann rearrangement of cyclohexanone oxime under the carder gas of H2. The content of coke deposited ...The addition of platinum over the B2O3/TiO2-ZrO2 remarkably enhanced its catalytic stability in the vapor phase Beckmann rearrangement of cyclohexanone oxime under the carder gas of H2. The content of coke deposited on catalyst surface was decreased from 1.92% over the B2O3/TiO2-ZrO2 to 1.14% over the platinum promoted B2O3/TiO2-ZrO2 after reaction of six hours. This result indicates that the platinum added on the B2O3/TiO2-ZrO2 catalyst plays an important role in reducing the coke formation on the catalyst surface.展开更多
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20873125),
文摘A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.
基金Project supported by the Guangxi Natural Science Foundation(2014GXNSFAA118057)Guangxi Science and Technology Planning Project(AB16380276)
文摘In this work, the effectiveness of V2O5-WO3/TiO2 catalysts modified with different CeO2 contents by impregnation and co-precipitation methods on the selective catalytic reduction of NOxby NH3 have been studied comparatively by various experimental techniques. The results showed that the NO conversion of V2O5-WO3/CeO2-TiO2 catalysts modified by co-precipitation method obviously increased with the Ce doping contents in the studied range below 20%(All Ce contents are in mass fractions), but the NO conversion of V2O5-WO3/CeO2/TiO2 catalysts modified by impregnation methods was lower than V2O5-WO3/CeO2-TiO2 catalysts especially beyond 2.5% Ce doping contents. The V2O5-WO3/CeO2-TiO2 catalysts showed better SCR activity, wider reaction window, and higher sulfur and water resistance. The characterization results elucidated that the modified catalysts by co-precipitation method exhibited higher specific surface area, much better dispersity of Ce component, more Ce^(3+)species and more Br?nsted acid sites than that by impregnation. The vacancies caused by more Ce^(3+)species were favorable for more NO oxidation to NO2, and the interaction between Ce species and WOxspecies generated more Br?nsted acid sites. It could be supposed that dispersed Ce Oxspecies and WOxspecies offered more second active centers respectively to adsorb oxygen and activate ammonia as co-catalysis to the primary active center of V ions, thus facilitated the better SCR activity of modified V2O5-WO3/CeO2-TiO2 catalysts by coprecipitation methods. The co-precipitation methods with Ce component were more suitable for production of modified commercial V2O5-WO3/TiO2 catalysts.
基金The financial support from the National Natural Science Foundation of China (20590361)the National Outstanding Young Scientists Foundation of China (20625620)
文摘A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons.
基金Supported by the National Natural Science Foundation of China(21276076)the Fundamental Research Funds for the Central Universities of China(WA1014003)State Key Laboratory of Chemical Engineering(SKL-ChE-10C06)
文摘A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g^-1, 0.78 mmol·g^-1, 2.18 mmol·g^-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.
基金Project supported by National Natural Science Foundation of China (20773090, 20803049)the Specialized Research Fund for the Doctoral Program of Higher Education (20070610026, 200806100009)
文摘Ce-Zr-Al-Nd2O3 (CZAN) support materials were prepared by co-precipitation and impregnation methods, respectively. They were characterized by X-ray diffTaction (XRD), low temperature nitrogen adsorption-desorption, oxygen pulsing technique, H2-temperamre programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The Pd-only three-way catalysts (Pd-TWC) supported on these materials were prepared by incipient wetness method and studied by activity tests. The results demonstrated that the CZAN supports obtained by the two methods showed better structural, textural and redox properties than the CZA without Nd2O3, and the addition of Nd203 improved the catalytic activity of TWC. Especially, the CZAN-i support prepared by impregnation method had better thermal stability and redox property. Meanwhile, the Pd/CZAN-i catalyst exhibited the best catalytic performance. XPS measurements indicated that the Nd-modified samples possessed more Ce3+ and oxygen vacancies on the surface of samples, which led to a better redox property. The excellent redox property of support materials helped to improve the catalytic activity of TWC.
基金Supported by the Special Funds for Major State Basic Research Program of China (No.2003CB615702), the National Natural Science Foundation of China (No.20636020) and the Natural Science Foundation of Jiangsu Province (No.BK2006722).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.
基金Project supported by the Programs Foundation of Ministry of Education of China (20070610026)the National Natural Science Foundation of China (20773090, 20803049)
文摘The catalytic behaviors of Pd (1.4 wt.%) catalysts supported on CeO2-ZrO2 promoted with La2O3 were investigated for methanol decomposition. The measurements of inductively coupled plasma emission spectroscopy (ICP), N2 adsorption-desorption (BET), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and oxygen storage capacity (OSC) were used to characterize the properties of catalysts. The catalysts' activities were tested in a fixed bed continuous flow reactor operating under atmospheric pressure. The Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 catalyst exhibited the best activity. The reasons for this were twofold: (1) doping of La improved effectively textural properties of CeO2-ZrO2 oxygen storage materials, and (2) Pd/Ce0.8Zr0.2O2-5 wt.%La2O3 possessed super oxygen storage property and reducibility due to the existence of lattice defect oxygen or mobile oxygen, which helped to re-oxidize zerovalent Pd0 to a partly oxidized Pdδ+. By introducing 5 wt.%La2O3, the specific surface area of the sample increased, but declined if further increasing the content of La2O3 to 10 wt.%.
基金Financial supports from the NSFC-DFG (21761132006),NSFC (21773108)fundamental research funds for central universities are acknowledged
文摘A 60%Fe/Al_2O_3 catalyst was prepared by the co-precipitation method.It was reduced by H_2 to produce metallic Fe,which was then sulfided by CS_2 to Fe_(0.96) S and Fe_3S_4 or phosphided by triphenylphosphine(PPh3) in liquid phases to Fe2 P and Fe P.It was found that the iron sulfides(Fe0.96 S and Fe_3S_4) exhibited the low activity for the hydrodesulfurization(HDS) reactions.The HDS activity was also low on the Fe(metal)/Al_2O_3 and Fe_2 P/Al_2O_3 catalysts since they were converted into Fe0.96 S and Fe_3S_4 during the HDS reactions.In contrast,the FeP/Al_2O_3 was found to be stable and active for the HDS reactions.In particular,Fe P/Al_2O_3 possessed significantly smaller Fe P particles than Fe P/C,leading to the significant higher HDS activity of FeP/Al_2O_3 than Fe P/C.
基金supported by the National Natural Science Foundation of China(21603112,21806085)Natural Science Foundation of Fujian Province(2016J02692,2019J01837)+1 种基金Natural Science Foundation of Ningde Normal University(2018T03,2018Z02)the Program of Innovative Research Team in Science and Technology in Fujian Province University(IRTSTFJ)~~
文摘Magnetically recyclable porous sodium dodecyl sulfate(SDS)/Fe2O3 hybrids,which combine the porous structure of Fe2O3 and hydrophobicity of SDS,have been successfully synthesized for the first time.Porous Fe2O3 has been first pyrolyzed from MIL-100(Fe)using a simple two-step calcination route.Then,the obtained porous Fe2O3 nanoparticles have been self-assembled with SDS molecules and yielded hydrophobic SDS/Fe2O3 hybrids.The porous SDS/Fe2O3 hybrids have been demonstrated to be highly efficient for the denitrification of pyridine under visible light irradiation.The pyridine removal ratio has reached values as high as 100%after irradiation for 240 min.Combining the results of a series of experimental measurements,it was concluded that the superior photocatalytic performance of SDS/Fe2O3 hybrids could be attributed to(i)the fast electron transport owing to the unique porous structure of Fe2O3,(ii)the superior visible light absorption of Fe2O3 nanoparticles,and(iii)the“bridge molecule”role of SDS efficiently improving the separation and transfer across the interfacial domain of SDS/Fe2O3 of photogenerated electron-hole pairs.More significantly,after the catalytic reaction,the SDS/Fe2O3 hybrids could be easily recovered using magnets and reused during subsequent cycles,which indicated their stability and recyclability.
文摘Characteristics of carbon deposition of CH 4 and C 2H 4 decomposition over supported Ni and Ni Ce catalysts were studied by using a pulse reaction as well as BET, TPR, XPS and hydrogen chemisorption techniques. It is found that there is a metal semiconductor interaction (MScI) in the Ni Ce catalyst, and the effect of MScI on the carbon deposition of CH 4 decomposition is opposite to that of C 2H 4. A novel model of carbon deposition of CH 4 or C 2H 4 decomposition was proposed.
基金Project supported by National Natural Science Foundation of China(21173195,21203167)
文摘A series of Pd/La-Al2O3(PLA) catalysts with La-Al2O3(LA) support calcined at different temperatures(500, 700, 900 and 1050 oC) were prepared using an incipient wetness impregnation method. The activity of the fresh and hydrothermally aged PLA catalysts were tested for total oxidation of CO and C3H8. The activity of the fresh PLA catalysts for CO and C3H8 oxidation increased with increasing calcination temperature of the support, while the activities of the aged catalysts declined and became essentially the same. CO chemisorption results revealed that the suppressed activities of the aged catalysts were mainly due to the decline of palladium dispersion. The turnover frequency(TOF) of CO oxidation increased with increasing reduction ability of the catalysts, with a fresh catalyst calcined at 1050 oC having the highest value(0.048 s–1). However, the TOF of C3H8 total oxidation was affected by not only the redox properties of catalysts but also the size of Pd particle, and large Pd particles possessed higher TOF value of C3H8 oxidation, with the highest value(0.125 s–1) being obtained on an aged catalyst calcined at 500 oC.
基金supported by the National Natural Science Foundation of China (No. 21377008)the National High Technology Research and Development Program of China ("863"Program)(No. 2015AA034603)the Foundation of the Creative Research Team Construction Promotion Project of Beijing Municipal Institutions
文摘Three-dimensionally ordered mesoporous Fe2O3(meso-Fe2O3) and its supported Au, Pd,and Au-Pd alloy(xA uP dy/meso-Fe2O3; x = 0.08–0.72 wt.%; Pd/Au molar ratio(y) = 1.48–1.85)photocatalysts have been prepared via the KIT-6-templating and polyvinyl alcohol-protected reduction routes, respectively. Physical properties of the samples were characterized, and their photocatalytic activities were evaluated for the photocatalytic oxidation of acetone in the presence of a small amount of H2O2 under visible-light illumination. It was found that the meso-Fe2O3 was rhombohedral in crystal structure. The as-obtained samples displayed a high surface area of 111.0–140.8 m^2/g and a bandgap energy of 1.98–2.12 eV. The Au, Pd and/or Au–Pd alloy nanoparticles(NPs) with a size of 3–4 nm were uniformly dispersed on the surface of the meso-Fe2O3 support. The 0.72 wt.% AuP d1.48/meso-Fe2O3 sample performed the best in the presence of 0.06 mol/L H2O2 aqueous solution, showing a 100% acetone conversion within4 hr of visible-light illumination. It was concluded that the good performance of 0.72 wt.%AuPd(1.48)/meso-Fe2O3 for photocatalytic acetone oxidation was associated with its ordered mesoporous structure, high adsorbed oxygen species concentration, plasmonic resonance effect between AuPd(1.48) NPs and meso-Fe2O3, and effective separation of the photogenerated charge carriers. In addition, the introduction of H2O2 and the involvement of the photo-Fenton process also played important roles in enhancing the photocatalytic activity of 0.72 wt.%AuPd(1.48)/meso-Fe2O3.
基金supported by the Open Program of the Tianjin Key Laboratory of Green Chemical Engineering Process Engineering,Tiangong University,Tianjin(Grant No.GCEPE20190108)the Inner Mongolia Natural Science Foundation(Grant No.2020MS02015)the Regional Science Foundation Project of the National Natural Science Foundation of China(Grant No.42167029)
文摘Given the difficulties of degrading benzotriazole(BTA),this study used a one-pot hydrothermal method to prepareα-Fe_(2)O_(3)/Cu_(2)O(FC)composites for photoelectrocatalytic(PEC)degradation of BTA.The characterization of FC structure showed that Cu_(2)O in cubic crystals was loaded with circular sheets of Fe_(2)O_(3).Owing to this structure,FC showed efficient PEC degradation of BTA when exposed to ultraviolet light.The experimental results demonstrated that FC efficiently degraded BTA.When the PEC degradation continued for 60 min,100%degradation of BTA was achieved because FC enhanced the photoelectron-hole separation and the separation and transfer of articulated carriers.High per-formance liquid chromatography-mass spectrometry showed that intermediates formed during the PEC degradation of BTA.Finally,various pathways for degradation of BTA were postulated.This FC-based PEC system provides a harmless and effective method for degradation of BTA.
基金supported by grants from the Major State Basic Research Development Program of China ("973" Program, 2010CB226905)the National Natural Science Foundation of China (Grant Nos. 21006128 and 21106185)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100133120007)the Shandong Provincial Natural Science Foundation of China (ZR2011BQ002)the Fundamental Research Funds for the Central Universities and the Graduate Innovation Project of China University of Petroleum (Grant No. CXZD11-06)
文摘A simple method for preparation of presulfided eggshell CoMoS/γ-Al2O3 catalysts with sharp boundary is developed, through which the eggshell thicknesses of Co and Mo could be easily regulated by controlling the impregnation time. According to the results characterized by EDS, XRD, HRTEM and FT-IR of adsorbed CO, the active component structures, the nature and/or the amount of active sites on the eggshell catalyst are similar to these on the uniform catalyst. The evaluation results of the catalytic performance in selective hydrodesulfurization (HDS) of FCC gasoline show the presence of significant internal diffusion inhibition effect on HDS of S-compounds especially in the uniform catalyst. Compared with uniform catalyst, the eggshell catalyst could remarkably reduce such an internal diffusion inhibition effect due to a shortened diffusion path of the reactants, thus showing higher HDS activity and selectivity.
文摘This work reports the enhancing effect of a highly cost effective and efficient metal, Fe, incorporation to Co or Ni based Mo/Al2O3 catalysts in the oxidative desulfurization (ODS) of dibenzothiophene (DBT) using H2O2 and formic acid as oxidants. The influence of operating parameters i.e. reaction time, catalyst dose, reaction temperature and oxidant amount on oxidation process was investigated. Results revealed that 99% DBT conversion was achieved at 60℃ and 150 min reaction time over Fe-Ni-Mo/Al2O3. Fe tremendously enhanced the ODS activity of Co or Ni based Mo/Al2O3 catalysts following the activity order:Fe-Ni-Mo/Al2O3 〉 Fe-Co-Mo/Al2O3 〉 Ni-Mo/Al2O3 〉 Co-Mo/Al2O3, while H2O2 exhibited higher oxidation activity than formic acid over all catalyst systems. Insight about the surface morphology and textural properties of fresh and spent catalysts were achieved using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Atomic Absorption Spectroscopy (AAS) and BET surface area analysis, which helped in the interpretation of experimental data. The present study can be deemed as an effective approach on industrial level for ODS of fuel oils crediting to its high efficiency, low process/catalyst cost, safety and mild operating condition.
文摘The addition of platinum over the B2O3/TiO2-ZrO2 remarkably enhanced its catalytic stability in the vapor phase Beckmann rearrangement of cyclohexanone oxime under the carder gas of H2. The content of coke deposited on catalyst surface was decreased from 1.92% over the B2O3/TiO2-ZrO2 to 1.14% over the platinum promoted B2O3/TiO2-ZrO2 after reaction of six hours. This result indicates that the platinum added on the B2O3/TiO2-ZrO2 catalyst plays an important role in reducing the coke formation on the catalyst surface.