Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray ...Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.展开更多
In2O3 octahedrons were synthesized by carbothermal reduction using In2O3 nanoparticles as the source material. The as-synthesized products were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray(...In2O3 octahedrons were synthesized by carbothermal reduction using In2O3 nanoparticles as the source material. The as-synthesized products were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray(EDX), scanning electron microscopy(SEM), transmission electron microscopy(TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction analysis(SAED) and Room-temperature photoluminescence(PL) spectroscopy. The results show that the products are single-crystalline In2O3 octahedrons, the length of the octahedrons is in the range of 400~3 000 nm; the PL patterns display two peaks located at 447nm and 555 nm upon excitation at 380 nm, and the other two peaks located at 444 nm and 550 nm upon excitation at 325 nm; the excitation pattern shows two peaks located at 274 nm and 371 nm, respectively. The growth mechanism of the In2O3 octahedrons is discussed, and the high supersaturation ratio is considered as the key factor.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921101,2014CB921103 and2013CB922103the National Natural Science Foundation of China under Grant Nos 11274003,61176088 and 61274102+1 种基金the Program for the New Century Excellent Talents in University under Grant No NCET-11-0240the PAPD Project,and the Fundamental Research Funds for the Central Universities
文摘Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.
文摘In2O3 octahedrons were synthesized by carbothermal reduction using In2O3 nanoparticles as the source material. The as-synthesized products were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray(EDX), scanning electron microscopy(SEM), transmission electron microscopy(TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction analysis(SAED) and Room-temperature photoluminescence(PL) spectroscopy. The results show that the products are single-crystalline In2O3 octahedrons, the length of the octahedrons is in the range of 400~3 000 nm; the PL patterns display two peaks located at 447nm and 555 nm upon excitation at 380 nm, and the other two peaks located at 444 nm and 550 nm upon excitation at 325 nm; the excitation pattern shows two peaks located at 274 nm and 371 nm, respectively. The growth mechanism of the In2O3 octahedrons is discussed, and the high supersaturation ratio is considered as the key factor.
基金supported by the National Natural Science Foundation of China(60374048,60977031)Jilin Provincial Science and Technology Department(20060928,20080330)+2 种基金Seed Foundations of Jilin University,China(2006-2008)National High-Tech Research and Development Program of China(863)(2009AA032402)Doctoral Found of Ministry of Education of China(20090061110040)~~