Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scann...Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scanning electron microscope),and XPS(X-ray photoelectron spectroscopy)and the purification effect on NO_(x) and PM was measured through simulated emission experiments.The results indicate that CuCrO_(2) catalyst has good catalytic activity,the maximum NO_(x) conversion rate can be up to 28.15%,and the ignition temperature of PM can be reduced to 285℃.When the molecular ratio of Cr:Fe=9:1,the catalyst can achieve better catalytic effect,the maximum NO_(x) conversion rate will be up to 30.25%and the PM ignition temperature can be reduced to 280℃.In addition,the catalytic activity of catalyst supported on different carriers was also studied.The results show that catalyst on SiC foam ceramic carrier has better catalytic activity than that on cordierite honeycomb ceramic carrier.The maximum NO_(x) conversion of CuCrO_(2) and CuCr_(0.9)Fe_(0.1)O_(2) can be increased by 0.72%and 1.33%respectively,and the PM ignition temperature can be further reduced by 15 and 5℃respectively.展开更多
This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production fr...This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes.展开更多
A series of Au/Co_(x)Fe_(3-x)O_(4) catalysts was synthesized using the sol-deposition method by depositing 2–5 nm Au particles on Fe-doped Co_(3)O_(4).Co_(2)FeO_(4),with a Co/Fe molar ratio of 2:1,exhibited higher sp...A series of Au/Co_(x)Fe_(3-x)O_(4) catalysts was synthesized using the sol-deposition method by depositing 2–5 nm Au particles on Fe-doped Co_(3)O_(4).Co_(2)FeO_(4),with a Co/Fe molar ratio of 2:1,exhibited higher specific surface area,Co^(3+)/Co^(2+)ratio,and oxygen vacancy content compared to Co_(3)O_(4).As a result,it displayed better performance in CO oxidation,achieving a total conversion temperature(T100)of 96℃.Au greatly improved the catalytic efficiency of all Co_(x)Fe_(3-x)O_(4) samples,with the 0.2%Au/Co_(2)FeO_(4) catalyst achieving a further decrease in T100 to 73℃.Stability tests conducted at room temperature on the 1%Au/Co_(x)Fe_(3-x)O_(4) catalysts demonstrated a slowed deactivation rate after Fe-doping.The reaction pathway for CO oxidation catalyzed by Au/Co_(2)FeO_(4) followed the Mars-van Krevelen mechanism.展开更多
Capacitive Fe-doped Ni_(2) P(Fe_(2x) Ni_(2(1-x))P)is synthesized via the modified solvothermal method to form Ohmic Schottky heterojunctions with monolayer Ti_(3)C_(2)(MLTC).The composite(10%0.1FNP/CdS-2%MLTC)achieved...Capacitive Fe-doped Ni_(2) P(Fe_(2x) Ni_(2(1-x))P)is synthesized via the modified solvothermal method to form Ohmic Schottky heterojunctions with monolayer Ti_(3)C_(2)(MLTC).The composite(10%0.1FNP/CdS-2%MLTC)achieved a high hydrogen evolution rate(HER)of 19.18 mmol h−1 with a 50 mg sample.In a mere span of 3 h,an impressive NO_(3)-reduction of 0.42 mg/L was achieved,accompanied by an excep-tional 92%N_(2) selectivity.Quantum efficiency(QE)can reach 56.22%(λ=475 nm)by adding 0.1FNP and MLTC.In contrast to previous catalysts,the QE of visible light after 500 nm has been improved to 45.2%(λ=500 nm)or 36.4%(λ=550 nm).The significant enhancement of HER and NO_(3)-−reduction is attributed to the enhanced adsorption of oxygen-containing reactants,the lowering of the reduction over-potential,further enhanced separation efficiency of photogenerated carriers through the ohmic Schottky heterojunction after iron doping.Additionally,the observed capacitor-like nature of 0.1FNP is also an es-sential factor for the enhanced reduction ability of the composites.展开更多
To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-dop...To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.展开更多
The meso-macroporous Fe-doped Cu O was prepared by a simple hydrothermal method combined with post-annealing. The samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), Brunaue...The meso-macroporous Fe-doped Cu O was prepared by a simple hydrothermal method combined with post-annealing. The samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller N2 adsorption-desorption analyses and UV-vis diffuses reflectance spectroscopy. The Fe-doped Cu O sample shows higher adsorption capacity and photocatalytic activity for xanthate degradation than pure Cu O under visible light irradiation. In addition, the adsorption process is found to fit Langmuir isotherms and pseudo-second-order kinetics. The the first order kinetic Langmuir Hinshelwood model was used to study the reaction kinetics of photocatalytic degradation, and the apparent rate constant( k) was calculated. The value of k for Fe-doped Cu O is 1.5 times that of pure Cu O. The higher photocatalytic activity of Fe-doped Cu O is attributed to higher specific surface area together with stronger visible light absorption.展开更多
The pure TiO2 and Fe salts [Fe(C2O4)3,5H2O]-doped TiO2 electrodes were prepared by the hydrothermal method. The pure TiO2 or Fe-doped TiO2 slurry was coated onto the fluorine-doped tin oxide glass substrate by the D...The pure TiO2 and Fe salts [Fe(C2O4)3,5H2O]-doped TiO2 electrodes were prepared by the hydrothermal method. The pure TiO2 or Fe-doped TiO2 slurry was coated onto the fluorine-doped tin oxide glass substrate by the Doctor Blade method and then sintered at 450 ℃. The Mott-Schottks, plot indicates that the fiat band potential of TiO2 was shifted positively after Fe-doped TiO2. The positive shift of the fiat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2. This study shows that photovoltaic efficiency increased by 22.9% from 6.07% to 7.46% compared to pure TiO2, and the fill factors increased from 0.53 to 0.63.展开更多
The synthesis and characterization of Fe-doped CuA102 semiconductor were reported. The samples were synthesized by a simple and cost effective spin-on technique from solid state reaction of Cu20 and A1203 on sapphire ...The synthesis and characterization of Fe-doped CuA102 semiconductor were reported. The samples were synthesized by a simple and cost effective spin-on technique from solid state reaction of Cu20 and A1203 on sapphire (001) substrate. Appropriate ethyl-cellulose (EC) and terpineol are useful for the formation of Fe-doped CuA102 films. X-ray diffraction (XRD) revealed the growth of pure delafossite CuA102 phase ruled out elemental metallic Fe clusters in all the Fe incorporated CuA102 films. The existence of ferromagnetism at room temperature is evidenced by well-defined hysteresis loops. Specially, the saturation magnetization (Ms) values at room temperature have been monotonously enhanced with the increase of Fe composition from 1% to 5%.展开更多
We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations andexperiments. Theoretically, based on the spin-polarized density functional theory within the Heyd-Scuseria-E...We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations andexperiments. Theoretically, based on the spin-polarized density functional theory within the Heyd-Scuseria-Ernzerhof (HSE03) approach, we systematically investigate the magnetic properties of Fe-doped InP and predict the existence of electron-mediated ferromagnetism. Experimentally, by diffusing Fe into the n-type InP wafer with thermal annealing at 800 ℃, we observe room-temperature ferromagnetism in InP:Fe, which is in agreement with the theoretical prediction.展开更多
The photocatalytic degradation of methylene blue(MB) over Fe-doped CaTiO3 under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction(XRD), scanning electron microsc...The photocatalytic degradation of methylene blue(MB) over Fe-doped CaTiO3 under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction(XRD), scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS) system, Fourier transform infrared spectra(FT-IR), and UV-visible diffuse reflectance spectroscopy(DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO3 in the visible light region. The Fe-doped CaTiO3 exhibited higher photocatalytic activity than CaTiO3 for the degradation of MB.However, the photocatalytic activity of the Fe-doped CaTiO3 was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO3 prepared at500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB(10 ppm)under UV-visible light for 180 min.展开更多
Fe-doped ZnO film has been grown by laser molecular beam epitaxy(L-MBE) and structurally characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM),all of which reveal the high quality of the ...Fe-doped ZnO film has been grown by laser molecular beam epitaxy(L-MBE) and structurally characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM),all of which reveal the high quality of the film.No secondary phase was detected.Resonant photoemission spectroscopy(RPES) with photon energies around the Fe 2p-3d absorption edge is performed to detect the electronic structure in the valence band.A strong resonant effect at a photon energy of 710 eV is observed.Fe3+ is the only valence state of Fe ions in the film and the Fe 3d electronic states are concentrated at binding energies of about 3.8 eV and 7 eV~8 eV.There are no electronic states related to Fe near the Fermi level.Magnetic measurements reveal a typical superparamagnetic property at room temperature.The absence of electronic states related to Fe near the Fermi level and the high quality of the film,with few defects,provide little support to ferromagnetism.展开更多
High-quality Fe-doped Zn S films have been fabricated by electron beam evaporation.After the doping,the fabricated films still maintain the preferential crystalline orientation and phase purity of the host Zn S.Accord...High-quality Fe-doped Zn S films have been fabricated by electron beam evaporation.After the doping,the fabricated films still maintain the preferential crystalline orientation and phase purity of the host Zn S.According to the observation of surface morphology,the root mean-square roughness of the samples increases slightly with the increase of doping content.All of the prepared samples are in cubic zinc blende structure of Zn S.Transmission spectrum confirms a more obvious dip near 3μm with higher dopant concentration and it can be attributed to the typical^(5)E→^(5)T_(2)transition of Fe^(2+).Fe-doped Zn S film is also successfully used for Q-switched Er:ZBLAN fiber laser.展开更多
The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-dop...The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-doped CoP prisms (Fe-CoP) via ion exchange of cobalt acetate hydroxide with [Fe(CN)_(6)]^(3-) and phosphorization-induced transformation of CoFe-PBA (Co/Fe-containing prussian blue analogue) prisms in N2 atmosphere. The obtained Fe-CoP not only inherits the hollow prism-like morphology of CoFe-PBA, but also forms rich mesoporous channel. The Fe-CoP prisms exhibit extraordinary OER performances in 1.0 M KOH, with a low overpotential of 236 mV to deliver a current density of 10 mA cm^(−2) and a low Tafel slope of 32.9 mV dec^(–1). Moreover, the presented electrocatalyst shows good long-term operating durability and activity. The XPS and TEM analysis confirm that Fe-CoP has undergone surface reconstruction in the process of electrocatalytic OER, and the in situ formed oxides and oxyhydroxides are the real active species to boost OER. This work provides a promising pathway to the design and synthesis of efficient and robust electrocatalysts with hierarchical hollow structure for boosting OER.展开更多
In order to utilize visible light in photocatalytic conversion of NOx, Fe atoms were doped in commercially available photocatalytic TiO2 powders by impregnating method. The crystal phase of TiO2 was not changed after ...In order to utilize visible light in photocatalytic conversion of NOx, Fe atoms were doped in commercially available photocatalytic TiO2 powders by impregnating method. The crystal phase of TiO2 was not changed after calcination process. Analysis by both X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicated that Fe atoms were incorporated in TiO2 as Ti-O-Fe linkages. One significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. The Fe-doped TiO2 powder exhibited photocatalytic activity for the degradation of NOx under visible light irradiation. The sample mixed with 0.2 at% Fe3+and calcined at 600 ℃ showed the best photocatalytic activity.展开更多
Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray ...Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.展开更多
The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were be...The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were better, compared with those obtained with bare TiO2 and Pt-doped TiO2. The effect of various experimental factors, such as photocatalytic dosage, temperature, solution pH and light intensity on the photocatalytic degradation of EDTA by Fe-doped TiO2 was investigated. The photocatalytic degradation treatment for the wastewater containing EDTA is simple, easy handling and low cost.展开更多
The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low ...The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low Fe doping concentrations,the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer, since the Fe atoms substitute Ga and introduce an FeGa^3+/2+ acceptor level. This results in a decrease in the yellow luminescence(YL) emission intensity accompanied by the appearance of an infrared(IR) emission, and a decrease in the off-state buffer leakage current(BLC). However, a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source. This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity, and an increase in the BLC. The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.展开更多
Nitrate(NO_(3)^(-)),a nitrogen-containing pollutant,is prevalent in aqueous solutions,contributing to a range of environmental and health-related issues.The electrocatalytic reduction of NO_(3)^(-)holds promise as a s...Nitrate(NO_(3)^(-)),a nitrogen-containing pollutant,is prevalent in aqueous solutions,contributing to a range of environmental and health-related issues.The electrocatalytic reduction of NO_(3)^(-)holds promise as a sustainable approach to both eliminating NO_(3)^(-)and generating valuable ammonia(NH_(3)).Nevertheless,the reduction reaction of NO_(3)^(-)(NO_(3)^(-)RR),involving 8-electron transfer process,is intricate,necessitating highly efficient electrocatalysts to facilitate the conversion of NO_(3)^(-)to NH_(3).In this study,Fe-doped Co_(3)O_(4) nanowire strutted three-dimensional(3D)pinewood-derived carbon(Fe-Co_(3)O_(4)/PC)is proposed as a high-efficiency NO_(3)^(-)RR electrocatalyst for NH_(3) production.Operating within 0.1 M NaOH containing NO_(3)^(-),Fe-Co_(3)O_(4)/PC demonstrates exceptional performance,obtain an impressively large NH_(3) yield of 0.55 mmol·h^(-1)·cm^(-2) and an exceptionally high Faradaic efficiency of 96.5%at-0.5 V,superior to its Co_(3)O_(4)/PC counterpart(0.2 mmol·h^(-1)·cm^(-2),73.3%).Furthermore,the study delves into the reaction mechanism of Fe-Co_(3)O_(4) for NO_(3)^(-)RR through theoretical calculations.展开更多
Nickel diselenide(NiSe_(2)),which has a high theoretical capacity,has attracted considerable attention as a promis-ing anode material for sodium-ion batteries(SIBs).Nevertheless,the intrinsically low conductivity,larg...Nickel diselenide(NiSe_(2)),which has a high theoretical capacity,has attracted considerable attention as a promis-ing anode material for sodium-ion batteries(SIBs).Nevertheless,the intrinsically low conductivity,large volume variation,and significant aggregation of NiSe_(2)during sodiation/desodiation remain significant obstacles to its application.Herein,we report flower-like Fe-doped NiSe_(2)/C hybrid spheres(denoted as Fe-NiSe_(2)/C)fabricated by a glucose intercalation strategy for efficient sodium storage.These Fe-NiSe_(2)/C hybrid spheres are composed of thin porous carbon nanosheets decorated with Fe-NiSe_(2)nanoparticles.In situ introduced carbon nanosheets derived from intercalated glucose accompanied by moderate Fe doping in NiSe2 nanoparticles can provide ac-celerated ion/electron transfer kinetics through fast ion channels in the flower-like architecture and intimately contacted interfaces between NiSe_(2)and carbon nanosheets as well as maintain structural integrity by alleviating volume variation.Consequently,the optimal anode of the Fe-NiSe_(2)/C hybrid spheres delivered a high discharge capacity of 415 mAh g^(-1)at 0.5 A g^(-1),outstanding rate capability(243 mAh g^(-1)at 5 A g^(-1)),and significantly enhanced cycling stability(388 mAh g^(-1)at 1 A g^(-1)over 200 cycles).This work offers an efficient and valu-able strategy for realizing tailored heteroatom doping in transition metal selenides,accompanied by an in situ combination of conductive carbonaceous networks for advanced alkali metal ion batteries.展开更多
NH_(3),derived from electrocatalytic nitrogen reduction reaction(NRR),is promising to satisfy the need of food production and serve as a carbon-free liquid energy carrier in the near future.Yet major challenges remain...NH_(3),derived from electrocatalytic nitrogen reduction reaction(NRR),is promising to satisfy the need of food production and serve as a carbon-free liquid energy carrier in the near future.Yet major challenges remain in enhancing NH_(3) yield rate and conversion efficiency of available electrocatalysts.This work achieved an ultrahigh electrocatalytic NH_(3)yield rate on the_(0.50)Fe-Bi_(2)W0_(6) catalyst by a facile Fe-doped strategy.Up to 289μg·h^(-1)·mg_(cat)^(-1) of NH_(3) formation rate was obtained at-0.75 V vs.RHE,which was reliably quantized by indophenol blue and ^(1)H NMR methods.The impressive result is an order of magnitude higher than that of the reported Fe-and Bi-based catalysts,even more superior than the result of single atom Ru catalyst.The key of the outstanding NRR behaviors on the_(0.50)Fe-Bi_(2)W0_(6) catalyst is the significant hydrogen evolution reaction(HER)suppression and the synergy between Bi and Fe,which can effectively modulate the electron distribution and accelerate the electron transport.This work endows a new insight to further explore the high-performance electrocatalysts toward NRR.展开更多
基金Funded by National Natural Science Foundation of China(No.52494933)。
文摘Fe-doped CuCrO_(2) catalyst CuCr_(1-x)Fe_xO_(2) series were prepared by the sol-gel method with different Fe contents.The structure and properties of the catalysts were investigated by XRD(X-ray diffraction),SEM(scanning electron microscope),and XPS(X-ray photoelectron spectroscopy)and the purification effect on NO_(x) and PM was measured through simulated emission experiments.The results indicate that CuCrO_(2) catalyst has good catalytic activity,the maximum NO_(x) conversion rate can be up to 28.15%,and the ignition temperature of PM can be reduced to 285℃.When the molecular ratio of Cr:Fe=9:1,the catalyst can achieve better catalytic effect,the maximum NO_(x) conversion rate will be up to 30.25%and the PM ignition temperature can be reduced to 280℃.In addition,the catalytic activity of catalyst supported on different carriers was also studied.The results show that catalyst on SiC foam ceramic carrier has better catalytic activity than that on cordierite honeycomb ceramic carrier.The maximum NO_(x) conversion of CuCrO_(2) and CuCr_(0.9)Fe_(0.1)O_(2) can be increased by 0.72%and 1.33%respectively,and the PM ignition temperature can be further reduced by 15 and 5℃respectively.
基金funding from the"Ministero dell'Universitàe della Ricerca(MUR)"(Italy)under the"Dipartimento di Eccellenza 2018-2022"program.
文摘This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes.
基金supported by the Fundamental Research Program of Shanxi Province of China(202203021211103,202303021212172,202403021211196).
文摘A series of Au/Co_(x)Fe_(3-x)O_(4) catalysts was synthesized using the sol-deposition method by depositing 2–5 nm Au particles on Fe-doped Co_(3)O_(4).Co_(2)FeO_(4),with a Co/Fe molar ratio of 2:1,exhibited higher specific surface area,Co^(3+)/Co^(2+)ratio,and oxygen vacancy content compared to Co_(3)O_(4).As a result,it displayed better performance in CO oxidation,achieving a total conversion temperature(T100)of 96℃.Au greatly improved the catalytic efficiency of all Co_(x)Fe_(3-x)O_(4) samples,with the 0.2%Au/Co_(2)FeO_(4) catalyst achieving a further decrease in T100 to 73℃.Stability tests conducted at room temperature on the 1%Au/Co_(x)Fe_(3-x)O_(4) catalysts demonstrated a slowed deactivation rate after Fe-doping.The reaction pathway for CO oxidation catalyzed by Au/Co_(2)FeO_(4) followed the Mars-van Krevelen mechanism.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20230330)Postgradu-ate Research Practice Innovation Program of Jiangsu Province(No.KYCX22_1339)+1 种基金China Postdoctoral Science Foundation(No.2023M741661)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB530009).
文摘Capacitive Fe-doped Ni_(2) P(Fe_(2x) Ni_(2(1-x))P)is synthesized via the modified solvothermal method to form Ohmic Schottky heterojunctions with monolayer Ti_(3)C_(2)(MLTC).The composite(10%0.1FNP/CdS-2%MLTC)achieved a high hydrogen evolution rate(HER)of 19.18 mmol h−1 with a 50 mg sample.In a mere span of 3 h,an impressive NO_(3)-reduction of 0.42 mg/L was achieved,accompanied by an excep-tional 92%N_(2) selectivity.Quantum efficiency(QE)can reach 56.22%(λ=475 nm)by adding 0.1FNP and MLTC.In contrast to previous catalysts,the QE of visible light after 500 nm has been improved to 45.2%(λ=500 nm)or 36.4%(λ=550 nm).The significant enhancement of HER and NO_(3)-−reduction is attributed to the enhanced adsorption of oxygen-containing reactants,the lowering of the reduction over-potential,further enhanced separation efficiency of photogenerated carriers through the ohmic Schottky heterojunction after iron doping.Additionally,the observed capacitor-like nature of 0.1FNP is also an es-sential factor for the enhanced reduction ability of the composites.
基金Project(60661001) supported by the National Natural Science Foundation of China
文摘To make the ferroelectric BaTiO3 possess ferromagnetism simultaneously,magnetic Fe was doped into BaTiO3 ceramics at doping levels up to 10%(molar fraction).Both tetragonal and hexagonal phases coexisted in the Fe-doped BaTiO3 ceramics except at 1% doping level.X-ray diffraction analysis indicated that higher doping level of Fe,higher sintering temperature and longer sintering time promoted the formation of hexagonal phases in Fe-doped BaTiO3 ceramics.Ferroelectricity was observed in all samples at room temperature,but it was greatly depressed by Fe doping.Except at doping level of 1%,room-temperature ferromagnetism was observed in the BaTiO3 ceramics.The dependence of the saturation magnetization and coercivities of the Fe-doped BaTiO3 ceramics on doping level was systematically studied.Both the saturation magnetization and magnetic coercivities were found to be dependent on the doping level as well as the fraction of the hexagonal phase in the ceramics.
基金Project(51102285)supported by the National Natural Science Foundation of China
文摘The meso-macroporous Fe-doped Cu O was prepared by a simple hydrothermal method combined with post-annealing. The samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller N2 adsorption-desorption analyses and UV-vis diffuses reflectance spectroscopy. The Fe-doped Cu O sample shows higher adsorption capacity and photocatalytic activity for xanthate degradation than pure Cu O under visible light irradiation. In addition, the adsorption process is found to fit Langmuir isotherms and pseudo-second-order kinetics. The the first order kinetic Langmuir Hinshelwood model was used to study the reaction kinetics of photocatalytic degradation, and the apparent rate constant( k) was calculated. The value of k for Fe-doped Cu O is 1.5 times that of pure Cu O. The higher photocatalytic activity of Fe-doped Cu O is attributed to higher specific surface area together with stronger visible light absorption.
基金supported by National Research Fund for High-Tech Research and Development of China Program(No. 2007AA05Z439)
文摘The pure TiO2 and Fe salts [Fe(C2O4)3,5H2O]-doped TiO2 electrodes were prepared by the hydrothermal method. The pure TiO2 or Fe-doped TiO2 slurry was coated onto the fluorine-doped tin oxide glass substrate by the Doctor Blade method and then sintered at 450 ℃. The Mott-Schottks, plot indicates that the fiat band potential of TiO2 was shifted positively after Fe-doped TiO2. The positive shift of the fiat band potential improves the driving force of injected electrons from the LUMO of the dye to the conduction band of TiO2. This study shows that photovoltaic efficiency increased by 22.9% from 6.07% to 7.46% compared to pure TiO2, and the fill factors increased from 0.53 to 0.63.
基金Funded by the National Natural Science Foundation of China(No.61077074)
文摘The synthesis and characterization of Fe-doped CuA102 semiconductor were reported. The samples were synthesized by a simple and cost effective spin-on technique from solid state reaction of Cu20 and A1203 on sapphire (001) substrate. Appropriate ethyl-cellulose (EC) and terpineol are useful for the formation of Fe-doped CuA102 films. X-ray diffraction (XRD) revealed the growth of pure delafossite CuA102 phase ruled out elemental metallic Fe clusters in all the Fe incorporated CuA102 films. The existence of ferromagnetism at room temperature is evidenced by well-defined hysteresis loops. Specially, the saturation magnetization (Ms) values at room temperature have been monotonously enhanced with the increase of Fe composition from 1% to 5%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60925016)
文摘We report on the electron-mediated ferromagnetism in Fe-doped InP from both first-principles calculations andexperiments. Theoretically, based on the spin-polarized density functional theory within the Heyd-Scuseria-Ernzerhof (HSE03) approach, we systematically investigate the magnetic properties of Fe-doped InP and predict the existence of electron-mediated ferromagnetism. Experimentally, by diffusing Fe into the n-type InP wafer with thermal annealing at 800 ℃, we observe room-temperature ferromagnetism in InP:Fe, which is in agreement with the theoretical prediction.
基金financially supported by the National Natural Science Foundation of China (Nos. 50874025, 51090384)
文摘The photocatalytic degradation of methylene blue(MB) over Fe-doped CaTiO3 under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction(XRD), scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS) system, Fourier transform infrared spectra(FT-IR), and UV-visible diffuse reflectance spectroscopy(DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO3 in the visible light region. The Fe-doped CaTiO3 exhibited higher photocatalytic activity than CaTiO3 for the degradation of MB.However, the photocatalytic activity of the Fe-doped CaTiO3 was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO3 prepared at500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB(10 ppm)under UV-visible light for 180 min.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775126 and 10975138)
文摘Fe-doped ZnO film has been grown by laser molecular beam epitaxy(L-MBE) and structurally characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM),all of which reveal the high quality of the film.No secondary phase was detected.Resonant photoemission spectroscopy(RPES) with photon energies around the Fe 2p-3d absorption edge is performed to detect the electronic structure in the valence band.A strong resonant effect at a photon energy of 710 eV is observed.Fe3+ is the only valence state of Fe ions in the film and the Fe 3d electronic states are concentrated at binding energies of about 3.8 eV and 7 eV~8 eV.There are no electronic states related to Fe near the Fermi level.Magnetic measurements reveal a typical superparamagnetic property at room temperature.The absence of electronic states related to Fe near the Fermi level and the high quality of the film,with few defects,provide little support to ferromagnetism.
基金the National Natural Science Foundation of China(Grant No.U1730141)。
文摘High-quality Fe-doped Zn S films have been fabricated by electron beam evaporation.After the doping,the fabricated films still maintain the preferential crystalline orientation and phase purity of the host Zn S.According to the observation of surface morphology,the root mean-square roughness of the samples increases slightly with the increase of doping content.All of the prepared samples are in cubic zinc blende structure of Zn S.Transmission spectrum confirms a more obvious dip near 3μm with higher dopant concentration and it can be attributed to the typical^(5)E→^(5)T_(2)transition of Fe^(2+).Fe-doped Zn S film is also successfully used for Q-switched Er:ZBLAN fiber laser.
基金Financial support from the National Natural Science Fundation of China(no.22072018,21703040,51873037 and 21973013).
文摘The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-doped CoP prisms (Fe-CoP) via ion exchange of cobalt acetate hydroxide with [Fe(CN)_(6)]^(3-) and phosphorization-induced transformation of CoFe-PBA (Co/Fe-containing prussian blue analogue) prisms in N2 atmosphere. The obtained Fe-CoP not only inherits the hollow prism-like morphology of CoFe-PBA, but also forms rich mesoporous channel. The Fe-CoP prisms exhibit extraordinary OER performances in 1.0 M KOH, with a low overpotential of 236 mV to deliver a current density of 10 mA cm^(−2) and a low Tafel slope of 32.9 mV dec^(–1). Moreover, the presented electrocatalyst shows good long-term operating durability and activity. The XPS and TEM analysis confirm that Fe-CoP has undergone surface reconstruction in the process of electrocatalytic OER, and the in situ formed oxides and oxyhydroxides are the real active species to boost OER. This work provides a promising pathway to the design and synthesis of efficient and robust electrocatalysts with hierarchical hollow structure for boosting OER.
基金Supported by National Natural Science Foundation of China (No.20276053) .
文摘In order to utilize visible light in photocatalytic conversion of NOx, Fe atoms were doped in commercially available photocatalytic TiO2 powders by impregnating method. The crystal phase of TiO2 was not changed after calcination process. Analysis by both X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicated that Fe atoms were incorporated in TiO2 as Ti-O-Fe linkages. One significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. The Fe-doped TiO2 powder exhibited photocatalytic activity for the degradation of NOx under visible light irradiation. The sample mixed with 0.2 at% Fe3+and calcined at 600 ℃ showed the best photocatalytic activity.
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921101,2014CB921103 and2013CB922103the National Natural Science Foundation of China under Grant Nos 11274003,61176088 and 61274102+1 种基金the Program for the New Century Excellent Talents in University under Grant No NCET-11-0240the PAPD Project,and the Fundamental Research Funds for the Central Universities
文摘Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.
文摘The conditions for photocatalytic degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution with Fe-doped titanium dioxide (TiO2) were optimized. The degradation efficiencies with Fe-doped TiO2 were better, compared with those obtained with bare TiO2 and Pt-doped TiO2. The effect of various experimental factors, such as photocatalytic dosage, temperature, solution pH and light intensity on the photocatalytic degradation of EDTA by Fe-doped TiO2 was investigated. The photocatalytic degradation treatment for the wastewater containing EDTA is simple, easy handling and low cost.
基金Project supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112)the National Natural Science Foundation of China(Grant No.51672163)the Key Laboratory of Functional Crystal Materials and Device(Shandong University,Ministry of Education),China(Grant No.JG1401)
文摘The photoluminescence(PL) and electrical properties of Al GaN/GaN high electron mobility transistors(HEMTs) with different Fe doping concentrations in the GaN buffer layers were studied. It was found that, at low Fe doping concentrations,the introduction of Fe atoms can result in a downward shift of the Fermi level in the GaN buffer layer, since the Fe atoms substitute Ga and introduce an FeGa^3+/2+ acceptor level. This results in a decrease in the yellow luminescence(YL) emission intensity accompanied by the appearance of an infrared(IR) emission, and a decrease in the off-state buffer leakage current(BLC). However, a further increase in the Fe doping concentration will conversely result in the upward shift of the Fermi level due to the incorporation of O donors under the large flow rate of the Fe source. This results in an increased YL emission intensity accompanied by a decrease in the IR emission intensity, and an increase in the BLC. The intrinsic relationship between the PL and BLC characteristics is expected to provide a simple and effective method to understand the variation of the electrical characteristic in the modulation Fe-doped HEMTs by optical measurements.
文摘Nitrate(NO_(3)^(-)),a nitrogen-containing pollutant,is prevalent in aqueous solutions,contributing to a range of environmental and health-related issues.The electrocatalytic reduction of NO_(3)^(-)holds promise as a sustainable approach to both eliminating NO_(3)^(-)and generating valuable ammonia(NH_(3)).Nevertheless,the reduction reaction of NO_(3)^(-)(NO_(3)^(-)RR),involving 8-electron transfer process,is intricate,necessitating highly efficient electrocatalysts to facilitate the conversion of NO_(3)^(-)to NH_(3).In this study,Fe-doped Co_(3)O_(4) nanowire strutted three-dimensional(3D)pinewood-derived carbon(Fe-Co_(3)O_(4)/PC)is proposed as a high-efficiency NO_(3)^(-)RR electrocatalyst for NH_(3) production.Operating within 0.1 M NaOH containing NO_(3)^(-),Fe-Co_(3)O_(4)/PC demonstrates exceptional performance,obtain an impressively large NH_(3) yield of 0.55 mmol·h^(-1)·cm^(-2) and an exceptionally high Faradaic efficiency of 96.5%at-0.5 V,superior to its Co_(3)O_(4)/PC counterpart(0.2 mmol·h^(-1)·cm^(-2),73.3%).Furthermore,the study delves into the reaction mechanism of Fe-Co_(3)O_(4) for NO_(3)^(-)RR through theoretical calculations.
基金the financial support provided by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY21E020010)National Natural Science Foundation of China(Grant No.52102315)+1 种基金Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SZ-TD006)Science and Technology Program of Zhejiang University Institute of Wenzhou(Grant No.XMGLKJZX-202206).
文摘Nickel diselenide(NiSe_(2)),which has a high theoretical capacity,has attracted considerable attention as a promis-ing anode material for sodium-ion batteries(SIBs).Nevertheless,the intrinsically low conductivity,large volume variation,and significant aggregation of NiSe_(2)during sodiation/desodiation remain significant obstacles to its application.Herein,we report flower-like Fe-doped NiSe_(2)/C hybrid spheres(denoted as Fe-NiSe_(2)/C)fabricated by a glucose intercalation strategy for efficient sodium storage.These Fe-NiSe_(2)/C hybrid spheres are composed of thin porous carbon nanosheets decorated with Fe-NiSe_(2)nanoparticles.In situ introduced carbon nanosheets derived from intercalated glucose accompanied by moderate Fe doping in NiSe2 nanoparticles can provide ac-celerated ion/electron transfer kinetics through fast ion channels in the flower-like architecture and intimately contacted interfaces between NiSe_(2)and carbon nanosheets as well as maintain structural integrity by alleviating volume variation.Consequently,the optimal anode of the Fe-NiSe_(2)/C hybrid spheres delivered a high discharge capacity of 415 mAh g^(-1)at 0.5 A g^(-1),outstanding rate capability(243 mAh g^(-1)at 5 A g^(-1)),and significantly enhanced cycling stability(388 mAh g^(-1)at 1 A g^(-1)over 200 cycles).This work offers an efficient and valu-able strategy for realizing tailored heteroatom doping in transition metal selenides,accompanied by an in situ combination of conductive carbonaceous networks for advanced alkali metal ion batteries.
基金supported by the National Natural Science Foundation of China(Nos.21675151,21705145 and 21721003)the Ministry of Science and Technology of China(No.2016YFA0203203).
文摘NH_(3),derived from electrocatalytic nitrogen reduction reaction(NRR),is promising to satisfy the need of food production and serve as a carbon-free liquid energy carrier in the near future.Yet major challenges remain in enhancing NH_(3) yield rate and conversion efficiency of available electrocatalysts.This work achieved an ultrahigh electrocatalytic NH_(3)yield rate on the_(0.50)Fe-Bi_(2)W0_(6) catalyst by a facile Fe-doped strategy.Up to 289μg·h^(-1)·mg_(cat)^(-1) of NH_(3) formation rate was obtained at-0.75 V vs.RHE,which was reliably quantized by indophenol blue and ^(1)H NMR methods.The impressive result is an order of magnitude higher than that of the reported Fe-and Bi-based catalysts,even more superior than the result of single atom Ru catalyst.The key of the outstanding NRR behaviors on the_(0.50)Fe-Bi_(2)W0_(6) catalyst is the significant hydrogen evolution reaction(HER)suppression and the synergy between Bi and Fe,which can effectively modulate the electron distribution and accelerate the electron transport.This work endows a new insight to further explore the high-performance electrocatalysts toward NRR.