期刊文献+
共找到2,574篇文章
< 1 2 129 >
每页显示 20 50 100
The Superconductivity in Fe-Based Family of Superconductors and Its Electronic Structure Analysis in Presence of Dopants Rh and Pd
1
作者 Ronald Columbié-Leyva Alberto López-Vivas +2 位作者 ] Ulises Miranda Ilya G. Kaplan 《Journal of Quantum Information Science》 CAS 2022年第4期111-124,共14页
The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is st... The discovered in 2008 Fe-based superconductors (SC) are a paramagnetic semimetal at ambient temperature and in some cases they become superconductor upon doping. In spite of so many years since its discovery it is still not known the mechanism that leads to superconductivity. The electronic structure study is used for determining key features of the SC mechanism in these materials. The calculations were performed using the modern suite of programs MOLPRO 2021. We performed quantum calculations of a cluster embedded in a background charge distribution that represents the infinite crystal. The Natural Population Analysis was used for determining the charge and spin distribution in the studied materials. As follows from our results, the possible mechanism for superconductivity corresponds to the RVB theory proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates. 展开更多
关键词 Iron-Based High-Tc superconductors SUPERCONDUCTIVITY Embeded Cluster Method Natural Bonding Orbitals Analysis
在线阅读 下载PDF
Discovery of Majorana Bound State in Fe-based Superconductor 被引量:8
2
作者 WANG Dongfei KONG Lingyuan +4 位作者 FAN Pen GAO Hongjun DING Hong Genda Gu Liang Fu 《Bulletin of the Chinese Academy of Sciences》 2018年第4期238-240,共3页
In 1937, Italian theoretical physicist Ettore Majorana published a paper, in which he made a brilliant discovery by decomposing Dirac equation into the real and imaginary parts. That is the famous equation describing ... In 1937, Italian theoretical physicist Ettore Majorana published a paper, in which he made a brilliant discovery by decomposing Dirac equation into the real and imaginary parts. That is the famous equation describing the motion of a Majorana fermion whose antiparticle is itself. 展开更多
关键词 DISCOVERY MAJORANA Bound State fe-based superconductor IOP MBS Fe
在线阅读 下载PDF
Review of rare earth oxide doping-modified laser cladding of Fe-based alloy coatings
3
作者 Han-yu Zhou Li-yao Li +4 位作者 Yang Zhao Ming-xue Shen Huo-ping Zhao Ye-long Xiao Shao-peng Liu 《China Foundry》 2025年第1期12-22,共11页
Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been ... Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been explored to improve the surface performance and prolong service life of these parts.Among these technologies,laser cladding has shown promise in producing Fe-based alloy coatings with superior interfacial bonding properties to the Fe-C alloy substrate.Additionally,the microstructure of the Fe-based alloy coating is more uniform and the grain size is finer than that of surfacing welding,thermal spraying,and plasma cladding,and the oxide film of alloying elements on the coating surface can improve the coating performance.However,Fe-based alloy coatings produced by laser cladding typically exhibit lower hardness,lower wear resistance,corrosion resistance,and oxidation resistance compared to coatings based on Co and Ni alloys.Moreover,these coatings are susceptible to defects such as pores and cracks.To address these limitations,the incorporation of rare-earth oxides through doping in the laser cladding process has garnered significant attention.This approach has demonstrated substantial improvements in the microstructure and properties of Fe-based alloy coatings.This paper reviewed recent research on the structure and properties of laser-cladded Fe-based alloy coatings doped with various rare earth oxides,including La_(2)O_(3),CeO_(2),and Y_(2)O_(3).Specifically,it discussed the effects of rare earth oxides and their concentrations on the structure,hardness,friction,wear,corrosion,and oxidation characteristics of these coatings.Furthermore,the mechanisms by which rare earth oxides influence the coating’s structure and properties were summarized.This review aimed to serve as a valuable reference for the application and advancement of laser cladding technology for rare earth modified Fe-based alloy coatings. 展开更多
关键词 fe-based alloys laser cladding rare-earth oxides MICROSTRUCTURE tribological properties
在线阅读 下载PDF
Database of superconductors with kagome lattice by high-throughput screening
4
作者 Lihong Wang Qi Li +3 位作者 Ke Ma Yingpeng Yu Shifeng Jin Xiaolong Chen 《Chinese Physics B》 2025年第10期213-220,共8页
The kagome lattice,characterized by a hexagonal arrangement of corner-sharing equilateral triangles,has garnered significant attention as a fascinating quantum material system that hosts exotic magnetic and electronic... The kagome lattice,characterized by a hexagonal arrangement of corner-sharing equilateral triangles,has garnered significant attention as a fascinating quantum material system that hosts exotic magnetic and electronic properties.The identification and characterization of this class of materials are critical for advancing our understanding of their role in emergent phenomena such as superconductivity.In this study,we developed a high-throughput screening framework for the systematic identification and classification of superconducting materials with kagome lattices,integrating them into established materials databases.Leveraging the Materials Project(MP)database and the MDR Super Con dataset,we analyzed over 150000 inorganic compounds and cross-referenced 26000 known superconductors.Using geometry-based structural modeling and experimental validation,we identified 129 kagome superconductors belonging to 17 distinct structural families,many of which had not previously been recognized as kagome systems.The materials are further classified into three categories in terms of topological flat bands,clean band structures,and coexisting magnetic or charge density wave(CDW)orderings.Based on these results,we established a database comprising 129 kagome superconductors,including the detailed crystallographic,electronic,and superconducting properties of these materials. 展开更多
关键词 superconductor kagome lattice DATABASE
原文传递
HTSC-2025:A benchmark dataset of ambient-pressure high-temperature superconductors for AI-driven critical temperature prediction
5
作者 Xiao-Qi Han Ze-Feng Gao +3 位作者 Xin-De Wang Zhenfeng Ouyang Peng-Jie Guo Zhong-Yi Lu 《Chinese Physics B》 2025年第10期205-211,共7页
The discovery of high-temperature superconducting materials holds great significance for human industry and daily life.In recent years,research on predicting superconducting transition temperatures using artificial in... The discovery of high-temperature superconducting materials holds great significance for human industry and daily life.In recent years,research on predicting superconducting transition temperatures using artificial intelligence(AI)has gained popularity,with most of these tools claiming to achieve remarkable accuracy.However,the lack of widely accepted benchmark datasets in this field has severely hindered fair comparisons between different AI algorithms and impeded further advancement of these methods.In this work,we present HTSC-2025,an ambient-pressure high-temperature superconducting benchmark dataset.This comprehensive compilation encompasses theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to 2025 based on BCS superconductivity theory,including the renowned X_(2)YH_(6)system,perovskite MXH_(3)system,M_(3)H_(8)system,cage-like BCN-doped metal atomic systems derived from LaH_(10)structural evolution,and two-dimensional honeycomb-structured systems evolving from MgB_(2).In addition,we note a range of approaches inspired by physical intuition for designing high-temperature superconductors,such as hole doping,the introduction of light elements to form strong covalent bonds,and the tuning of spin-orbit coupling.The dataset presented in this paper is openly available at Science DB.The HTSC-2025 benchmark has been open-sourced on Hugging Face at https://huggingface.co/datasets/xiao-qi/HTSC-2025 and will be continuously updated,while the Electronic Laboratory for Material Science platform is available at https://in.iphy.ac.cn/eln/link.html#/124/V2s4. 展开更多
关键词 BENCHMARK superconductors artificial intelligence
原文传递
Enhancement of bending toughness for Fe-based amorphous nanocrystalline alloy with deep cryogenic-cycling treatment
6
作者 Yi-ran Zhang Dong Yang +5 位作者 Qing-chun Xiang Hong-yu Liu Jing Pang Ying-lei Ren Xiao-yu Li Ke-qiang Qiu 《China Foundry》 2025年第1期99-107,共9页
The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were inves... The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were investigated.The DCT samples were obtained by subjecting the as-annealed samples to a thermal cycling process between the temperature of the supercooled liquid zone and the temperature of liquid nitrogen.Through flat plate bending testing,hardness measurements,and nanoindentation experiment,it is found that the bending toughness of the DCT samples is improved and the soft magnetic properties are also slightly enhanced.These are attributed to the rejuvenation behavior of the DCT samples,which demonstrate a higher enthalpy of relaxation.Therefore,DCT is an effective method to enhance the bending toughness of Fe-based amorphous nanocrystalline alloys without degrading the soft magnetic properties. 展开更多
关键词 deep cryogenic-cycling treatment fe-based amorphous nanocrystalline alloy bending toughness REJUVENATION
在线阅读 下载PDF
Synchronously enhancing the plasticity and soft magnetism in Fe-based metallic glasses through memory effect
7
作者 Weihua Zhou Shiyuan Zhang +3 位作者 Lijian Song Juntao Huo Jun-Qiang Wang Yi Li 《Journal of Materials Science & Technology》 2025年第10期146-152,共7页
Annealing has been a popular method to improve the soft magnetism of metallic glasses (MGs), which however usually makes MGs brittle and difficult to process. Here, it is demonstrated that the embrittled Fe-based MG c... Annealing has been a popular method to improve the soft magnetism of metallic glasses (MGs), which however usually makes MGs brittle and difficult to process. Here, it is demonstrated that the embrittled Fe-based MG can be reductilized and the coercivity can be further lowered through the rejuvenation of memory effect. The synchronous improvement in the plasticity and soft magnetic properties is attributed to the combination effects of releasing much residual stress, decreasing the magnetic anisotropy, and homogenizing the glasses during the rejuvenation process. The current work opens a new perspective to improve the properties of MGs by utilizing the memory effect and holds promising commercial application potential. 展开更多
关键词 Memory effect REJUVENATION Reductilization Soft magnetism fe-based metallic glass
原文传递
Emerging modification strategies for layered Fe-based oxide cathodes toward high-performance sodium-ion batteries
8
作者 Zheng-Xiao Li Yi-Meng Wu +6 位作者 Jun-Wei Yin Peng-Fei Wang Zong-Lin Liu Yan-Xuan Wen Jun-Hong Zhang Yan-Rong Zhu Ting-Feng Yi 《Journal of Energy Chemistry》 2025年第8期122-147,共26页
Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cath... Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cathode materials influence the cost and energy output of SIBs.Therefore,the development of advanced cathode materials is crucial for the practical application of SIBs.Among various cathode materials,layered transition metal oxides(LTMOs)have received widespread attention owing to their straightforward preparation,abundant availability,and cost-competitiveness.Notably,layered Fe-based oxide cathodes are deemed to be one of the most promising candidates for the lowest price and easy-to-improve performance.Nevertheless,the challenges such as severe phase transitions,sluggish diffusion kinetics and interfacial degradation pose significant hurdles in achieving high-performance cathodes for SIBs.This review first briefly outlines the classification of layered structures and the working principle of layered oxides.Then,recent advances in modification strategies employed to address current issues with layered iron-based oxide cathodes are systematically reviewed,including ion doping,biphasic engineering and surface modification.Furthermore,the review not only outlines the prospects and development directions for layered Fe-based oxide cathodes but also provides novel insights and directions for future research endeavors for SIBs. 展开更多
关键词 Layered fe-based oxide cathodes lon doping Biphasic engineering Surface modification Sodium-ion batteries
在线阅读 下载PDF
Voids and cracks detection in bulk superconductors through magnetic field and displacement signals
9
作者 Dongming An Pengpeng Shi Xiaofan Gou 《Acta Mechanica Sinica》 2025年第5期148-161,共14页
Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applicat... Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors. 展开更多
关键词 Bulk superconductor Defect detection Multiple voids and cracks Damage index Particle swarm optimization
原文传递
InvDesFlow: An AI-Driven Materials Inverse Design Workflow to Explore Possible High-Temperature Superconductors
10
作者 Xiao-Qi Han Zhenfeng Ouyang +3 位作者 Peng-Jie Guo Hao Sun Ze-Feng Gao Zhong-Yi Lu 《Chinese Physics Letters》 2025年第4期85-98,共14页
The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primaril... The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases.However,the known materials only scratch the surface of the extensive array of possibilities within the realm of materials. 展开更多
关键词 physical intuition superconducting materialsparticularly condensed matter physicsconventional high temperature superconductors AI driven materials exploration inverse design
原文传递
Synergetic Enhancement of Hardness and Toughness in New Superconductors Ti_(2)Co and Ti_(4)Co_(2)O
11
作者 Lifen Shi Keyuan Ma +12 位作者 Jingyu Hou Pan Ying Ningning Wang Xiaojun Xiang Pengtao Yang Xiaohui Yu Huiyang Gou Jianping Sun Yoshiya Uwatoko Fabian O.von Rohr Xiangfeng Zhou Bosen Wang Jinguang Cheng 《Chinese Physics Letters》 2025年第6期170-177,共8页
Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.B... Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.Breaking through the limits of alloy materials is a preface and long-term topic,which is of great significance and value for improving the comprehensive mechanical properties of alloy materials.Here,we report on the discovery of a cubic alloy semiconducting material Ti_(2)Co with a large Vickers of hardness K_(v)^(exp)∼6.7GPa and low fracture toughness of K_(IC)^(exp)∼1.51MPa·m^(1/2).Unexpectedly,the K_(v)^(exp)∼6.7GPa is nearly triple of the K_(v)^(cal)∼2.66GPa predicted by density functional theory(DFT)calculations and theK_(IC)^(exp)∼1.51MPa·m^(1/2)is about one or two orders of magnitude smaller than that of ordinary titanium alloy materials(K_(IC)^(exp)∼30-120MPa·m^(1/2)).These specifications place Ti_(2)Co far from the phase space of the known alloy materials.Upon incorporation of oxygen into structural void positions,both values were simultaneously improved for Ti_(4)Co_(2)O to∼9.7GPa and∼2.19MPa·m^(1/2),respectively.Further DFT calculations on the electron localization function of Ti_(4)Co_(2)X(X=B,C,N,O)vs.the interstitial elements indicate that these simultaneous improvements originate from the coexistence of Ti-Co metallic bonds,the emergence of newly oriented Ti-X covalent bonds,and the increase of electron concentration.Moreover,the large difference between K_(v)^(exp)and K_(v)^(cal)of Ti_(2)Co suggests underlying mechanism concerning the absence of the O(16d)or Ti_(2)-O bonds in the O-(Ti_(2))_(6) octahedron.This discovery proposes a new pathway to simultaneously improve the comprehensive mechanical performances and illuminates the path of exploring superconducting materials with excellent mechanical performances. 展开更多
关键词 limits metallic bonding structures superhard materials HARDNESS superconductors alloy materials improving comprehensive mechanical properties cubic alloy semiconducting material
原文传递
Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate 被引量:20
12
作者 陈建敏 郭纯 周健松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2171-2178,共8页
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti... Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear. 展开更多
关键词 TITANIUM fe-based coating laser cladding WEAR
在线阅读 下载PDF
Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process 被引量:11
13
作者 高新华 张建利 +4 位作者 陈宁 马清祥 范素兵 赵天生 椿范立 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期510-516,共7页
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope... Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability. 展开更多
关键词 Zn promoter fe-based catalyst Light olefin Fischer-Tropsch synthesis Microwave-hydrothermal method
在线阅读 下载PDF
Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating 被引量:9
14
作者 吴宏 兰小东 +5 位作者 刘咏 李飞 张卫东 陈紫瑾 宰雄飞 曾晗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1629-1637,共9页
A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure a... A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance. 展开更多
关键词 fe-based metallic glass coating detonation gun spraying microstructure tribological behavior corrosion behavior
在线阅读 下载PDF
Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying 被引量:20
15
作者 王善林 成京昌 +1 位作者 李承勋 柯黎明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期146-151,共6页
The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-... The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-fuel (HVOF) spraying. The corrosion resistance of Fe-AMMC was investigated by potentiodynamic polarization tests in 1 mol/L HCl, NaCl, H2SO4 and NaOH solutions, respectively. The surface morphologies corroded were observed by SEM. The results indicate that Fe-AMMC exhibits excellent corrosion resistance, higher corrosion resistance than 304L stainless steel in the chloride solutions. The low corrosion current density and passive current density of Fe-AMMC with a wide spontaneous passivation region are about 132.0μA/cm2 and 9.0 mA/cm2 in HCl solution, and about 2.5 μA/cm2 and 2.3 mA/cm2 in NaCl solution. The excellent corrosion resistance demonstrates that Fe-based amorphous metallic matrix powder is a viable engineering material in practical anti-corrosion and anti-wear coating applications. 展开更多
关键词 fe-based metallic glass COATING corrosion resistance HVOF spraying
在线阅读 下载PDF
Effect of casting vacuum on thermodynamic and corrosion properties of Fe-based glassy alloy 被引量:2
16
作者 孙益民 王永刚 +4 位作者 张集滕 李瑞 郭玲玉 徐慧 王伟民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期844-849,共6页
The effect of casting vacuum on thermodynamic and corrosion properties of Fe61Co7Zr8Mo5W2B17 in shape of cylinder of 3 mm in diameter and ribbon of 20?40μm in thickness and 2?3 mm in width were investigated with X-ra... The effect of casting vacuum on thermodynamic and corrosion properties of Fe61Co7Zr8Mo5W2B17 in shape of cylinder of 3 mm in diameter and ribbon of 20?40μm in thickness and 2?3 mm in width were investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC), dilatometer (DIL), scanning electron microscopy (SEM) and electrochemical station. It is found that high casting vacuum can improve the glass forming ability (GFA), the contraction degree during heating, and the pitting resistance of the glassy alloy, which can be ascribed to the fact that the dissolution of tungsten in the melt is improved under the high casting vacuum. 展开更多
关键词 fe-based alloys casting vacuum DILATION corrosion resistance
在线阅读 下载PDF
Quantum Mechanical Calculations of High-T<sub>c</sub>Fe-Superconductors 被引量:1
17
作者 Ronald Columbié-Leyva Ulises Miranda +2 位作者 Alberto López-Vivas Jacques Soullard Ilya G. Kaplan 《Journal of Quantum Information Science》 2021年第2期84-98,共15页
In introduction we presented a short historical survey of the discovery of superconductivity (SC) up to the Fe-based materials that are not superconducting in a pure state. For this type of material, the transition to... In introduction we presented a short historical survey of the discovery of superconductivity (SC) up to the Fe-based materials that are not superconducting in a pure state. For this type of material, the transition to SC state occurs in presence of different dopants. Recently in the Fe-based materials at high pressures, the SC was obtained at room critical temperature. In this paper, we present the results of calculations of the isolated cluster representing infinitum crystal with Rh and Pd as dopants. All calculations are performed with the suite of programs Gaussian 16. The obtained results are compared with our previous results obtained for embedded cluster using Gaussian 09. In the case of embedded cluster our methodology of the Embedded Cluster Method at the MP2 electron correlation level was applied. In the NBO population analysis two main features are revealed: the independence of charge density transfer from the spin density transfer and, the presence of orbitals with electron density but without spin density. This is similar to the Anderson’s spinless holon and confirms our conclusions in previous publications that the possible mechanism for superconductivity can be the RVB mechanism proposed by Anderson for high T<sub>c</sub> superconductivity in cuprates. 展开更多
关键词 SUPERCONDUCTIVITY fe-based superconductors Embedded Cluster Method MP2 Method NBO Analysis
在线阅读 下载PDF
Exploration of iron-chalcogenide superconductors
18
作者 董持衡 王杭栋 方明虎 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期63-74,共12页
Iron-chalcogenide compounds with FeSe(Te, S) layers did not attract much attention until the discovery of high-Tc superconductivity (SC) in the iron-pnictide compounds at the begining of 2008. Compared with FeAs-b... Iron-chalcogenide compounds with FeSe(Te, S) layers did not attract much attention until the discovery of high-Tc superconductivity (SC) in the iron-pnictide compounds at the begining of 2008. Compared with FeAs-based superconductors, iron-chalcogenide superconductors have aroused enormous enthusiasm to study the relationship between SC and magnetisms with several distinct features, such as different antiferromagnetic ground states with relatively large moments in the parents, indicating possibly different superconducting mechanisms, the existence of the excess Fe atoms or Fe vacancies in the crystal lattice. Another reason is that the large single crystals are easily grown for the iron-chalcogenide compounds. This review will focus on our exploration for the iron-chalcogenide superconductors and discussion on several issues, including the crystal structure, magnetic properties, superconductivity, and phase separation. Some of them reach a consensus but some important questions still remain to be answered. 展开更多
关键词 fe-based superconductors Fe(Te Se S) compounds (T1 K Rb)FexSe2 compounds
原文传递
Microstructure and structural phase transitions in iron-based superconductors 被引量:1
19
作者 王臻 蔡瑶 +5 位作者 杨槐馨 田焕芳 王秩伟 马超 陈震 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期123-134,共12页
Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of s... Crystal structures and microstructural features, such as structural phase transitions, defect structures, and chemical and structural inhomogeneities, are known to have profound effects on the physical properties of superconducting materials. Recently, many studies on the structural properties of Fe-based high-Tc superconductors have been published. This review article will mainly focus on the typical microstructural features in samples that have been well characterized by physical measurements. (i) Certain common structural features are discussed, in particular, the crystal structural features for different superconducting families, the local structural distortions in the Fe2Pn2 (Pn = P, As, Sb) or FeeCh2 (Ch = S, Se, Te) blocks, and the structural transformations in the 122 system. (ii) In FeTe(Se) (11 family), the superconductivity, chemical and structural inhomogeneities are investigated and discussed in correlation with superconductivity. (iii) In the Ko.sFe1.6+xSe2 system, we focus on the typical compounds with emphasis on the Fe-vacancy order and phase separations. The microstructural features in other superconducting materials are also briefly discussed. 展开更多
关键词 fe-based superconductor structural transition structural inhomogeneity phase separation
原文传递
Surface hardening of Fe-based alloy powders by Nd:YAG laser cladding followed by electrospark deposition with WC-Co cemented carbide 被引量:22
20
作者 WANG Jiansheng,MENG Huimin,YU Hongying,FAN Zishuan,and SUN Dongbai School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第4期380-384,共5页
This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of lo... This paper presents the results of a study concerned with the surface hardening of Fe-based alloys and WC-8Co cemented carbide by inte- grating laser cladding and the electrospark deposition processes. Specimens of low carbon steel were processed firstly by laser cladding with Fe-based alloy powders and then by electrospark deposition with WC-SCo cemented carbide. It is shown that, for these two treatments, the electrospark coating possesses finer microstructure than the laser coating, and the thickness and surface hardness of the electrospark coating can be substantially increased. 展开更多
关键词 laser cladding electrospark deposition surface hardening fe-based alloy cemented carbide
在线阅读 下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部