期刊文献+
共找到82,847篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructural development and wear properties analyses of Fe-based coatings on bainitic steel by laser cladding 被引量:3
1
作者 Run-feng Peng Min Zhang +3 位作者 Yu-hang Li Yue-long Yu Ying-chun Guan Zhun-li Tan 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第4期687-697,共11页
Wear-resistant Fe-based coating was prepared by high-speed laser cladding on bainitic steel.The influence of laser scanning speed on microstructure,microhardness,and wear resistance of cladding coating was investigate... Wear-resistant Fe-based coating was prepared by high-speed laser cladding on bainitic steel.The influence of laser scanning speed on microstructure,microhardness,and wear resistance of cladding coating was investigated.Scanning electron microscopy results showed that the coating was mainly composed of dendrite and interdendrite.Scanning electron microscope images were converted by binary algorithm to facilitate statistics of dendrite and interdendrite area.Statistical results indicate that by accelerating the scanning speed,the interdendrite eutectic structure increased.According to energydispersive X-ray spectroscopy and X-ray diffraction results,the interdendrite was enriched with elements Cr,Mo,and B,and main structures in the coating wereα-Fe,γ-Fe,and M(23)C_(6).The hardness of the coating was much higher than that of the substrate.Elements diffused from coating to substrate,resulting in a transition zone of hardness.Moreover,with an increase in the scanning speed,the diffusion of elements at the coating–matrix interface decreased,while the hardness and wear resistance of the coating increased.Grain refinement and interdendrite(γ-Fe,M_(23)C_(6))increasing due to high scanning speed were the major contributors to the increase in hardness and wear resistance. 展开更多
关键词 Laser CLADDING Microstructure WEAR PROPERTY fe-based coating Bainitic steel
原文传递
Wear Properties of Plasma Transferred Arc Fe-based Coatings Reinforced by Spherical WC Particles 被引量:2
2
作者 范丽 董耀华 +2 位作者 CHEN Haiyan DONG Lihua YIN Yansheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期433-439,共7页
Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures co... Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0 wt%, 30 wt%, and 60 wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope(SEM) and X-ray diffraction(XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3 D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60 wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction(COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30 wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60 wt% of WC. 展开更多
关键词 plasma TRANSFERRED arc(PTA) metal matrix composite coatings(MMCs) SPHERICAL tungsten CARBIDE fe-based alloys WEAR resistance
原文传递
Review of rare earth oxide doping-modified laser cladding of Fe-based alloy coatings
3
作者 Han-yu Zhou Li-yao Li +4 位作者 Yang Zhao Ming-xue Shen Huo-ping Zhao Ye-long Xiao Shao-peng Liu 《China Foundry》 2025年第1期12-22,共11页
Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been ... Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been explored to improve the surface performance and prolong service life of these parts.Among these technologies,laser cladding has shown promise in producing Fe-based alloy coatings with superior interfacial bonding properties to the Fe-C alloy substrate.Additionally,the microstructure of the Fe-based alloy coating is more uniform and the grain size is finer than that of surfacing welding,thermal spraying,and plasma cladding,and the oxide film of alloying elements on the coating surface can improve the coating performance.However,Fe-based alloy coatings produced by laser cladding typically exhibit lower hardness,lower wear resistance,corrosion resistance,and oxidation resistance compared to coatings based on Co and Ni alloys.Moreover,these coatings are susceptible to defects such as pores and cracks.To address these limitations,the incorporation of rare-earth oxides through doping in the laser cladding process has garnered significant attention.This approach has demonstrated substantial improvements in the microstructure and properties of Fe-based alloy coatings.This paper reviewed recent research on the structure and properties of laser-cladded Fe-based alloy coatings doped with various rare earth oxides,including La_(2)O_(3),CeO_(2),and Y_(2)O_(3).Specifically,it discussed the effects of rare earth oxides and their concentrations on the structure,hardness,friction,wear,corrosion,and oxidation characteristics of these coatings.Furthermore,the mechanisms by which rare earth oxides influence the coating’s structure and properties were summarized.This review aimed to serve as a valuable reference for the application and advancement of laser cladding technology for rare earth modified Fe-based alloy coatings. 展开更多
关键词 fe-based alloys laser cladding rare-earth oxides MICROSTRUCTURE tribological properties
在线阅读 下载PDF
Effects of cerium oxide doping on performance characteristics of nickel-based black coatings
4
作者 QIN Zizhou CHEN Liyang +5 位作者 YANG Yumeng MAO Xifeng ZHU Benfeng GUO Weirong WEI Guoying ZHANG Luhan 《电镀与精饰》 北大核心 2026年第1期25-38,共14页
Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon ... Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance. 展开更多
关键词 nickel-based coatings black coatings Ce oxide protective properties
在线阅读 下载PDF
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
5
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel 被引量:10
6
作者 Li Fan Hai-yan Chen +2 位作者 Yao-hua Dong Li-hua Dong Yan-sheng Yin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期716-728,共13页
The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4... The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion. 展开更多
关键词 fe-based coating laser cladding AISI 4130 steel wear resistance corrosion resistance
在线阅读 下载PDF
Microstructure and Mechanical Properties of Fe-based Amorphous Composite Coatings Reinforced by Stainless Steel Powders 被引量:9
7
作者 H.Zhou C.Zhang +2 位作者 W.Wang M.Yasir L.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第1期43-47,共5页
In this study,a few Fe-based amorphous matrix composite coatings reinforced with various portions(4,8 and16 vol.%) of 31 6L stainless steel powders have been successfully produced through high velocity oxy-fuel(HVOF) ... In this study,a few Fe-based amorphous matrix composite coatings reinforced with various portions(4,8 and16 vol.%) of 31 6L stainless steel powders have been successfully produced through high velocity oxy-fuel(HVOF) spraying.The microstructure of the composite coatings was systematically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The main structure of composite coatings remained amorphous while 31 6L stainless steel splats were distributed homogeneously in the amorphous matrix and well connected with surrounding amorphous phase.Bonding strength of coatings to the substrate was determined by 'pull-off' tensile tests.The results revealed that the31 6L stainless steel phase effectively improved the bonding strength of amorphous coatings,which is mainly contributed by the strong metallurgical bonding between stainless steel and amorphous splats.The addition of31 6L stainless steel also enhanced the ductility and fracture resistance of the coatings due to the ductile stainless steel phases,which can arrest crack propagation and increase energy dissipation. 展开更多
关键词 Thermal spraying fe-based amorphous coating Stainl
原文传递
Formation and corrosion behavior of Fe-based amorphous metallic coatings prepared by detonation gun spraying 被引量:12
8
作者 周正 王鲁 +1 位作者 王富耻 柳彦博 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期634-638,共5页
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of the... Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion. 展开更多
关键词 fe-based AMORPHOUS coating DETONATION GUN microstructure corrosion behavior
在线阅读 下载PDF
Microstructure and Frictional Behavior of Fe-based Amorphous Metallic Coatings Prepared by Atmospheric Plasma Spraying 被引量:6
9
作者 Zhou Zheng1,2, Wang Lu2, He Dingyong1, Liu Yanbo2, Zhang Guanzhen1 1 Beijing University of Technology, Beijing 100124, China 2 Beijing Institute of Technology, Beijing 100081, China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S3期160-165,共6页
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were cha... Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by means of atmospheric plasma spraying (APS) process under different conditions. The microstructure and frictional behavior were characterized simultaneously in this article. The results show that the as-deposited coatings consist of amorphous matrix and some precipitated nanocrystals, while the amorphous fraction and particle deformation as well as crystallization mechanism are significantly sensitive to the spraying parameters. The amorphous coatings express high microhardness and excellent wear resistance under dry frictional wear condition, which attributes to the inherent characteristic of amorphous phase and the dispersion strengthening of precipitated nanocrystals. The dominant wear mechanism of the amorphous coatings is fatigue wear accompanying with oxidative wear. In addition, the microhardness and wear resistance of the amorphous coatings were improved by optimizing spraying parameters, owing to the effect of both structural character and proper proportional of amorphous and nanocrystals fraction. 展开更多
关键词 fe-based AMORPHOUS coating APS MICROSTRUCTURE FRICTION
原文传递
Microstructure and Wear Properties of Fe-based Amorphous Coatings Deposited by High-velocity Oxygen Fuel Spraying 被引量:6
10
作者 Gang WANG Ping XIAO +1 位作者 Zhong-jia HUANG Ru-jie HE 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第7期699-704,共6页
Fe-based powder with a composition of Fe_(42.87)Cr_(15.98)Mo_(16.33)C_(15.94)B_(8.88)(at.%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the... Fe-based powder with a composition of Fe_(42.87)Cr_(15.98)Mo_(16.33)C_(15.94)B_(8.88)(at.%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the microstructure and the wear properties of the Fe-based alloy coatings were systematically studied.The results showed that the obtained Fe-based coatings with a thickness of about 400μm consisted of a large-volume amorphous phase and some nanocrystals.With increasing the fuel and oxygen flow rates,the porosity of the obtained coatings decreased.The coating deposited under optimized parameters exhibited the lowest porosity of 2.8%.The excellent wear resistance of this coating was attributed to the properties of the amorphous matrix and the presence of nanocrystals homogeneously distributed within the matrix.The wear mechanism of the coatings was discussed on the basis of observations of the worn surfaces. 展开更多
关键词 metallic glass high-velocity oxygen fuel fe-based amorphous coating micro-hardness wear resistance
原文传递
Characteristics of Fe-based WC Composite Coatings Prepared by Double-pass Plasma Cladding Process 被引量:6
11
作者 Jiang Shaoqun Ren Qingwen +4 位作者 Ying, Ding Gang, Wang Yu, Yi Wang Zehua Zhou Zehua 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第S1期195-198,共4页
The Fe-based WC composite coatings were clad on Q235 steel by double-pass plasma cladding method,in which the WC-Co(WC covered with cobalt:78wt%WC,12wt%Co)doping was about 10wt%,20wt%and 40wt%,respectively.The microst... The Fe-based WC composite coatings were clad on Q235 steel by double-pass plasma cladding method,in which the WC-Co(WC covered with cobalt:78wt%WC,12wt%Co)doping was about 10wt%,20wt%and 40wt%,respectively.The microstructure and wear performance of the composite coatings were investigated by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and ball-disc wear tests.The results show that the clad coatings contain mainly?-Fe,WC and carbides(Cr23C6,Fe3W3C-Fe4W2C)phases and the precipitation of carbides increases with the increase of WC-Co doping content.The WC-Co doping content has an obvious effect on the microstructure of the clad coatings.For the clad coatings with low WC-Co doping,the microstructure gradually transforms from planar crystal at the interface of substrate/coating to cell/dendritic crystal at the middle and the upper portion of the coatings.But there are a number of fishbone-like structure at the middle and the upper portion of clad coating with 40wt%WC-Co doping.The microstructure at the top is smaller than that at the bottom for all the coatings.The maximum of hardness of the clad coatings is 72.3HRC which is about 6.9 as much as the hardness of Q235 steel substrate.The composite coatings have good wear resistance due to the reinforcement of carbide particles and the strong bonding between carbide particles and ferroalloy.The suitable increase of WC-Co doping content can improve the wear resistance of the composite coatings. 展开更多
关键词 plasma CLADDING fe-based WC WEAR resistance metal matrix composite
原文传递
Fabrication and microstructure of Fe-based amorphous composite coatings by laser cladding 被引量:2
12
作者 朱庆军 邹增大 +1 位作者 曲士尧 王新洪 《China Welding》 EI CAS 2008年第1期23-28,共6页
Fe-based amorphous composite coatings were fabricated on AISI 1045 steel by laser cladding. The results of the X- ray diffraction and transmission electron microscopy analyses .show the coating is composed of an amorp... Fe-based amorphous composite coatings were fabricated on AISI 1045 steel by laser cladding. The results of the X- ray diffraction and transmission electron microscopy analyses .show the coating is composed of an amorphous phase in majority and a nanocrystaUine phuse in m,inority. Phase composition of the coating changes along the depth of the coating. The reasonable scanning speed for fabricating an amorphous composite coating is 3 500 mm/min when the laser power is 4 800 W and the laser beam diameter is 2 mm. If the scanning speed is lower than 3 500 mm/min, the intensity of the two main diffraction peaks in X-ray diffraction patterns of the coatings decreases with the scanning speeds increasing. At the same time, a broad halo peak emerges and enlarges. High laser power and fast scanning speed are the essential conditions of amorphization. The coating exhibits high microhardness. 展开更多
关键词 laser cladding composite coating AMORPHOUS ALLOY
在线阅读 下载PDF
Effect of Kerosene Flowing Rate on Microstructure and Wearing Properties for Fe-based Amorphous Coatings
13
作者 YANG Xianglin WANG Shanlin +3 位作者 GONG Yubing CHEN Yuhua WANG Shuaixing WU Jisi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第6期1128-1134,共7页
The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties o... The effects of kerosene flow rate on the microstructure and wearing properties were investigated for Fe-based amorphous coatings sprayed by High Velocity Oxygen Fuel (HVOF).The microstructures and wearing properties of the Fe-based amorphous coatings were analyzed with scanning electron microscope (SEM),X-ray diffraction analyzer (XRD),and ball-on-disc tribometer (CFT-1),respectively.The experimental results show that the well interfacial bonding can be observed between the amorphous coating layer and the substrate,and the porosity in amorphous coating layer is less to 1%.Only some crystalline a-Fe and FeO phases can be detected by XRD in the amorphous coatings,while the amorphous content is up to 99.4%.The wearing coefficient is near to 0.15,which is superior to SUS316 of 0.28.As the increasing of wearing loads,the failure mode is changed from oxidation wear to the composite of oxidation and abrasive wear. 展开更多
关键词 fe-based amorphous coatings HVOF kerosene flow wear resistance
原文传递
Effects of C/B4 C ratio on microstructure and property of Fe-based alloy coatings reinforced with in situ synthesized TiB2 -TiC
14
作者 江少群 王刚 +2 位作者 吕长月 王泽华 周泽华 《China Welding》 EI CAS 2015年第1期6-12,共7页
The Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC were prepared on Q235 steel by reactive plasma cladding using Fe901 alloy, Ti, B4C, and graphite (C) powders us raw materials. The effects of ... The Fe-based alloy coatings reinforced with in situ synthesized TiB2-TiC were prepared on Q235 steel by reactive plasma cladding using Fe901 alloy, Ti, B4C, and graphite (C) powders us raw materials. The effects of C/B4C weight percentage ratio (0 - 1. 38 ) on the microstructure , microhardness , and wet sand abrasion resistance of the coatings were investigated. The results show that the coatings consist of ( Fe, Cr ) solid solution, TiC, TiB2, Ti8C5 , and Fe3 C phases. The decrease of C/B4 C ratio is propitious to the formation of TiB2 and Tis C5. Increasing the C/B4 C ratio can help to refine the microstructure of the coatings. However, the microhardness of the middle-upper of the coatings and the wet sand abrasion resistance of the coatings degenerate with the increase of C/B4C ratio. The coating exhibits the best wet sand abrasion resistance at C/BaC =0 and its average mass loss rate per unit wear distance is 0. 001 2%/m. The change of the wet sand abrasion resistance of the coatings with the C/B4C ratio can be mainly attributed to the combined action of the changes of microhardness and the volume percentage of the ceramic reinforcements containing titanium in the coatings. 展开更多
关键词 plasma cladding fe-based alloy coating TiB2-TiC in situ synthesis ABRASION
在线阅读 下载PDF
Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings 被引量:5
15
作者 Dandan Liang Xiaodi Liu +4 位作者 Yinghao Zhou Yu Wei Xianshun Wei Gang Xu Jun Shen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第2期243-253,共11页
This study investigated the effect of annealing below glass transition temperature(T_(g))on the microstructural characteristics,mechanical property,wettability,and electrochemical performance of activated combustion-h... This study investigated the effect of annealing below glass transition temperature(T_(g))on the microstructural characteristics,mechanical property,wettability,and electrochemical performance of activated combustion-high velocity air fuel(AC-HVAF)-sprayed Fe-Cr-Mo-W-C-B-Y amorphous coatings(ACs).Results showed that Fe-based ACs with a thickness of~300μm exhibited a fully amorphous structure with low oxidization.Originating from the reduced free volume,sub-T_(g) annealing increased the thermal stability,hardness,and surface hydrophobicity of Fe-based ACs.The enhanced corrosion resistance of sub-T_(g) annealed ACs in 3.5 wt%NaCl solution was attributed to the increased surface hydrophobicity and passivation capability.This finding elucidates the correlation between sub-T_(g) annealing and the properties of Fe-based ACs,which promotes ameliorating ACs with superior performance. 展开更多
关键词 Activated combustion-high velocity air fuel(AC–HVAF) Amorphous coating Sub-Tg ANNEALING Free volume WETTABILITY Electrochemical behavior
原文传递
In situ synthesis of Fe-based alloy clad coatings containing TiB_2–TiN –(h-BN) 被引量:1
16
作者 Shao-qun Jiang Gang Wang +3 位作者 Qing-wen Ren Chuan-duo Yang Ze-hua Wang and Ze-hua Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期613-619,共7页
Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti... Fe-based alloy coatings containing TiB2–TiN –(h-BN) were synthesized in situ on Q235 steel substrates by a plasma cladding process using the powders of Fe901 alloy, Ti, and h-BN as raw materials. The effects of Ti/h-BN mass ratio on interfacial bonds between the coating and substrate along with the microstructures and microhardnesses of the coatings were investigated. The results show that the Ti/h-BN mass ratio is a vital factor in the formation of the coatings. Free h-BN can be introduced into the coatings by adding an excess amount of h-BN into the precursor. Decreases in the Ti/h-BN mass ratio improve the microstructural uniformity and compactness and enhance the interfacial bonds of the coatings. At a Ti/h-BN mass ratio of 10/20, the coating is free of cracks and micropores, and mainly consists of Fe-Cr, Fe3B, TiB2, TiN, Ti2N, TiB, FeN, FeB, Fe2B, and h-BN phases. Its average microhardness in the zone between 0.1–2.8 mm from the coating surface is about Hv0.2 551.5. 展开更多
关键词 iron-based materials coatings plasma cladding in situ synthesis microhardness
在线阅读 下载PDF
Effect of Fe content on microstructure and mechanical properties of Cu-Fe-based composite coatings by laser induction hybrid rapid cladding 被引量:2
17
作者 Sheng-feng ZHOU Jian-bo LEI +3 位作者 Zheng XIONG Jin-bo GUO Zhen-jie GU Hong-bo PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3196-3204,共9页
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser... To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate. 展开更多
关键词 composite coating laser induction hybrid rapid cladding Cu.Fe alloy liquid phase separation microstructure mechanical properties
在线阅读 下载PDF
Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate 被引量:20
18
作者 陈建敏 郭纯 周健松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2171-2178,共8页
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti... Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear. 展开更多
关键词 TITANIUM fe-based coating laser cladding WEAR
在线阅读 下载PDF
Fabrication, tribological and corrosion behaviors of detonation gun sprayed Fe-based metallic glass coating 被引量:9
19
作者 吴宏 兰小东 +5 位作者 刘咏 李飞 张卫东 陈紫瑾 宰雄飞 曾晗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1629-1637,共9页
A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure a... A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance. 展开更多
关键词 fe-based metallic glass coating detonation gun spraying microstructure tribological behavior corrosion behavior
在线阅读 下载PDF
Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying 被引量:17
20
作者 王善林 成京昌 +1 位作者 李承勋 柯黎明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期146-151,共6页
The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-... The Fe-based amorphous metallic matrix coating (Fe-AMMC) was fabricated with the powder mixtures of Fe-based metallic glass synthesized with industrial raw materials, NiCr alloy and WC particle by high velocity oxy-fuel (HVOF) spraying. The corrosion resistance of Fe-AMMC was investigated by potentiodynamic polarization tests in 1 mol/L HCl, NaCl, H2SO4 and NaOH solutions, respectively. The surface morphologies corroded were observed by SEM. The results indicate that Fe-AMMC exhibits excellent corrosion resistance, higher corrosion resistance than 304L stainless steel in the chloride solutions. The low corrosion current density and passive current density of Fe-AMMC with a wide spontaneous passivation region are about 132.0μA/cm2 and 9.0 mA/cm2 in HCl solution, and about 2.5 μA/cm2 and 2.3 mA/cm2 in NaCl solution. The excellent corrosion resistance demonstrates that Fe-based amorphous metallic matrix powder is a viable engineering material in practical anti-corrosion and anti-wear coating applications. 展开更多
关键词 fe-based metallic glass coatING corrosion resistance HVOF spraying
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部