Ammonia is essential for agriculture and,as a next-generation carbon-free fuel,typically produced through the Haber-Bosch method.This process requires high temperature and pressure,leading to significant energy consum...Ammonia is essential for agriculture and,as a next-generation carbon-free fuel,typically produced through the Haber-Bosch method.This process requires high temperature and pressure,leading to significant energy consumption and greenhouse gas emissions.Therefore,achieving ammonia synthesis under milder conditions has been a long-standing goal.In this study,we design and synthesize a series of CeO_(2)-modified Fe/carbon-based catalysts with varying amounts of CeO_(2)(Ce_(x)Fe_(y)/C).The catalyst Ce_(2)Fe_(5)/C demonstrates an ammonia yield rate of 3.5 mmol/(g·h),which is 44 times greater than that of Fe/C and 8 times greater than that of commercial Fe-based catalysts at 300℃and 1 MPa.Temperature-programmed desorption experiments show that Ce_(2)Fe_(5)/C has enhanced nitrogen adsorption capabilities.Multiple analyses confirm that the CeO_(2)in Ce_(2)Fe_(5)/C is rich in oxygen vacancies,which can provide electrons to Fe,facilitating nitrogen adsorption,dissociation,and activity in low-temperature ammonia synthesis.展开更多
Regulating the location of the metal promoters plays a vital role in catalyst structure and its catalytic behavior during CO_(2)hydrogenation to higher alcohols.Herein,we selected the metal promoters with a precipitat...Regulating the location of the metal promoters plays a vital role in catalyst structure and its catalytic behavior during CO_(2)hydrogenation to higher alcohols.Herein,we selected the metal promoters with a precipitation pH similar to that of Cu^(2+)or Fe^(3+)to prepare a series of CuFe-based catalysts.Characterization results show that doping Al or Cr promoter,located with the Fe phase,suppressed the excessive carburization of the Fe phase and maintained an optimal proportion between Fe_(3)O_(4) and amorphous iron carbide(FeC_(x)),thus exhibiting superior catalytic activity and stability.In contrast,doping Zn or In promoter,located with the Cu phase,underwent a deeper carburization and formed more crys-talline FeC_(x),showing an inferior performance.The CuFeCr catalyst achieved the highest space-time yield of 330 mg g_(cat)^(-1)h^(-1)for higher alcohols among these catalysts.This study provides a novel strategy for opti-mizing the structure of the active phases for CO_(2)hydrogenation.展开更多
Metallurgical dust(MD)was used as raw material to prepare rare earth Ce-doped Fe-based catalysts.The results show that the Ce_(0.1)/AMD-300℃catalyst prepared from acid-modified diatomite(AMD)with mCe/mMD=0.1(m_(Ce)an...Metallurgical dust(MD)was used as raw material to prepare rare earth Ce-doped Fe-based catalysts.The results show that the Ce_(0.1)/AMD-300℃catalyst prepared from acid-modified diatomite(AMD)with mCe/mMD=0.1(m_(Ce)and m_(MD)are the mass of Ce and MD,respectively)after being roasted at 300℃can reach 99%NO_(x)removal rate in the wide temperature range of 230–430℃and exhibits excellent So_(2)and H_(2)o resistance.The MD effectively removes alkali metal elements by the modification process,increases the specific surface area and optimizes the pore structure of MD.The doping of Ce element makes Fe-based catalysts have more surface adsorbed oxygen O_(α)and a higher Ce^(3+)/Ce^(4+)ratio.Through ammonia temperature-programmed desorption and hydrogen temperature-programmed reduction,it was found that the strong interaction between cerium and iron promotes the formation of more oxygen cavities in the catalyst,thereby generating more active and easily reducible oxygen species and promoting the transformation of Brønsted acid site to Lewis acid site.The research results provide a theoretical basis for the preparation of efficient and inexpensive Fe-based catalysts from MD.展开更多
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope...Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.展开更多
The influence of several anions on Fe-based Fischer-Tropsch catalyst, used in the synthesis of light olefins from synthesis gas, was studied. The results indicated that the addition of anions resulted in the reduction...The influence of several anions on Fe-based Fischer-Tropsch catalyst, used in the synthesis of light olefins from synthesis gas, was studied. The results indicated that the addition of anions resulted in the reduction of catalytic activity. When the anion content in the catalyst was 500 ppm, the influence of different anions on the catalysis activity was as follows: S^2- 〉Cl^-〉SO4^2-〉NO3. The addition of S^2- improved the selectivity of total hydrocarbons in the products, and Cl^- reduced this selectivity but increased the olefin content in the total hydrocarbons at the same time. When the contents of S^2- and Clin the catalyst were less than 50 ppm, their influence could be ignored. The XRD results indicated that the addition of anions reduced the contents of α-Fe and FeaC, which were the active components in the catalyst.展开更多
Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed rea...Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR). A parametric study ot the effects of some process variables, including reaction temperature and space velocity, is undertaken. The operating conditions strongly affect the catalyst performance. Methane conversion was increased by increasing the temperature and lowering the space velocity. Using temperatures between 700 and 900℃ and space velocities between 3 and 6 LN/(gcat·h), a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run. In addition, carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.展开更多
Achieving green ammonia(NH_(3))synthesis requires developing effective catalysts under mild conditions.However;the competitive adsorption of N2 and H_(2);as well as the strong binding of N-containing intermediates on ...Achieving green ammonia(NH_(3))synthesis requires developing effective catalysts under mild conditions.However;the competitive adsorption of N2 and H_(2);as well as the strong binding of N-containing intermediates on the catalyst;greatly inhibits the active sites for efficient NH_(3) synthesis.Here;we constructed a series of ZrH_(2)-modified Fe catalysts with dual active sites to address these issues and realized efficient NH_(3) synthesis under mild conditions.Our study shows that ZrH_(2) can not only provide active sites for H_(2) activation but also transfer electrons to Fe sites for accelerating N2 activation.The interaction between Fe and ZrH_(2) over 40ZrH_(2)-Fe leads to a decrease in work function and a downward shift of the d-band center;which is conducive to N2 activation and NH_(3) desorption;respectively.The utilization of distinct sites for activating different reactants can avoid the competitive adsorption of N2 and H_(2);leading to excellent NH_(3) synthesis activity of the 40 wt.%ZrH_(2)-mediated Fe catalyst.As a result;40ZrH_(2)-Fe exhibits a high NH_(3) synthesis rate of 23.3 mmol gcat-1h-1at 400℃and 1 MPa and robust stability during 100 h time-on-stream.展开更多
The development of human industry inevitably leads to excessive carbon dioxide(CO_(2))emissions.It can cause critical ecological consequences,primarily global warming and ocean acidification.In this regard,close atten...The development of human industry inevitably leads to excessive carbon dioxide(CO_(2))emissions.It can cause critical ecological consequences,primarily global warming and ocean acidification.In this regard,close attention is paid to the carbon capture,utilization,and storage concept.The key component of this concept is the catalytic conversion of CO_(2)into valuable chemical compounds and fuels.Light olefins are one of the most industrially important chemicals,and their sustainable production via CO_(2)hydrogenation could be a prospective way to reach carbon neutrality.Fe-based materials are widely recognized as effective thermocatalysts and photothermal catalysts for that process thanks to their low cost,high activity,and good stability.This review critically examines the most recent progress in the development and optimization of Fe-based catalysts for CO_(2)hydrogenation into light olefins.Particular attention is paid to understanding the roles of catalyst composition,structural properties,and promoters in enhancing catalytic activity,selectivity,and stability.展开更多
Renewable energy-driven water electrolysis is considered as an environmentally friendly hydrogen(H2)production technology.Replacing the oxygen evolution reaction(OER)with the urea oxidation reaction(UOR)is a more effe...Renewable energy-driven water electrolysis is considered as an environmentally friendly hydrogen(H2)production technology.Replacing the oxygen evolution reaction(OER)with the urea oxidation reaction(UOR)is a more effective way to improve the energy efficiency of H2 generation.Herein,a highly effi-cient 2D NiFeMo-based UOR catalyst and 1D NiFeMo-based HER catalyst are prepared by adjusting the concentration of MoO_(4)^(-).The MoO_(4)^(-)can serve as the key regulator to adjust the balance between the electrolytic dissociation(α)of the reactants and the supersaturation(S)to modulate the morphological and electronic structure.The prepared 2D NiFeMo nanosheet UOR catalyst and 1D NiFeMo nanorod HER catalyst can achieve a current density of 100 mA cm^(−2)at a potential of 1.36 and 0.062 V,respectively.In a HER/UOR system,a cell voltage of 1.58 V is needed to achieve a current density of 100 mA cm^(−2).The HER/UOR system operated stably for over 60 h with 3 times the direct water electrolysis current den-sity.Moreover,the in situ Raman characterization coupled with XPS analysis clarifies that the addition of high-valence Mo can lower the transition energy barrier between the low and high oxidation state of Ni,which in turn lowers the overpotential of UOR.This work provides a novel strategy for synthesizing morphology-dependent electrocatalysts for different catalytic systems.展开更多
Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been ...Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been explored to improve the surface performance and prolong service life of these parts.Among these technologies,laser cladding has shown promise in producing Fe-based alloy coatings with superior interfacial bonding properties to the Fe-C alloy substrate.Additionally,the microstructure of the Fe-based alloy coating is more uniform and the grain size is finer than that of surfacing welding,thermal spraying,and plasma cladding,and the oxide film of alloying elements on the coating surface can improve the coating performance.However,Fe-based alloy coatings produced by laser cladding typically exhibit lower hardness,lower wear resistance,corrosion resistance,and oxidation resistance compared to coatings based on Co and Ni alloys.Moreover,these coatings are susceptible to defects such as pores and cracks.To address these limitations,the incorporation of rare-earth oxides through doping in the laser cladding process has garnered significant attention.This approach has demonstrated substantial improvements in the microstructure and properties of Fe-based alloy coatings.This paper reviewed recent research on the structure and properties of laser-cladded Fe-based alloy coatings doped with various rare earth oxides,including La_(2)O_(3),CeO_(2),and Y_(2)O_(3).Specifically,it discussed the effects of rare earth oxides and their concentrations on the structure,hardness,friction,wear,corrosion,and oxidation characteristics of these coatings.Furthermore,the mechanisms by which rare earth oxides influence the coating’s structure and properties were summarized.This review aimed to serve as a valuable reference for the application and advancement of laser cladding technology for rare earth modified Fe-based alloy coatings.展开更多
The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were inves...The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were investigated.The DCT samples were obtained by subjecting the as-annealed samples to a thermal cycling process between the temperature of the supercooled liquid zone and the temperature of liquid nitrogen.Through flat plate bending testing,hardness measurements,and nanoindentation experiment,it is found that the bending toughness of the DCT samples is improved and the soft magnetic properties are also slightly enhanced.These are attributed to the rejuvenation behavior of the DCT samples,which demonstrate a higher enthalpy of relaxation.Therefore,DCT is an effective method to enhance the bending toughness of Fe-based amorphous nanocrystalline alloys without degrading the soft magnetic properties.展开更多
Annealing has been a popular method to improve the soft magnetism of metallic glasses (MGs), which however usually makes MGs brittle and difficult to process. Here, it is demonstrated that the embrittled Fe-based MG c...Annealing has been a popular method to improve the soft magnetism of metallic glasses (MGs), which however usually makes MGs brittle and difficult to process. Here, it is demonstrated that the embrittled Fe-based MG can be reductilized and the coercivity can be further lowered through the rejuvenation of memory effect. The synchronous improvement in the plasticity and soft magnetic properties is attributed to the combination effects of releasing much residual stress, decreasing the magnetic anisotropy, and homogenizing the glasses during the rejuvenation process. The current work opens a new perspective to improve the properties of MGs by utilizing the memory effect and holds promising commercial application potential.展开更多
Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cath...Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cathode materials influence the cost and energy output of SIBs.Therefore,the development of advanced cathode materials is crucial for the practical application of SIBs.Among various cathode materials,layered transition metal oxides(LTMOs)have received widespread attention owing to their straightforward preparation,abundant availability,and cost-competitiveness.Notably,layered Fe-based oxide cathodes are deemed to be one of the most promising candidates for the lowest price and easy-to-improve performance.Nevertheless,the challenges such as severe phase transitions,sluggish diffusion kinetics and interfacial degradation pose significant hurdles in achieving high-performance cathodes for SIBs.This review first briefly outlines the classification of layered structures and the working principle of layered oxides.Then,recent advances in modification strategies employed to address current issues with layered iron-based oxide cathodes are systematically reviewed,including ion doping,biphasic engineering and surface modification.Furthermore,the review not only outlines the prospects and development directions for layered Fe-based oxide cathodes but also provides novel insights and directions for future research endeavors for SIBs.展开更多
The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availa...The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availability of platinum have driven the search for alternative catalysts.While FeN4 single-atom catalysts have shown promising potential,their ORR activity needs to be further enhanced.In contrast,dual-atom catalysts(DACs)offer not only higher metal loading but also the ability to break the ORR scaling relations.However,the diverse local structures and tunable coordination environments of DACs create a vast chemical space,making large-scale computational screening challenging.In this study,we developed a graph neural network(GNN)-based framework to predict the ORR activity of Fe-based DACs,effectively addressing the challenges posed by variations in local catalyst structures.Our model,trained on a dataset of 180 catalysts,accurately predicted the Gibbs free energy of ORR intermediates and overpotentials,and identified 32 DACs with superior catalytic activity compared to FeN4 SAC.This approach not only advances the design of high-performance DACs,but also offers a powerful computational tool that can significantly reduce the time and cost of catalyst development,thereby accelerating the commercialization of fuel cell technologies.展开更多
As one of the most important chemicals and carbon-free energy carriers,ammonia(NH3)has significant energy-related applications in industry and agriculture.Ninety percent of NH_(3) is produced by the Haber-Bosch proces...As one of the most important chemicals and carbon-free energy carriers,ammonia(NH3)has significant energy-related applications in industry and agriculture.Ninety percent of NH_(3) is produced by the Haber-Bosch process using high-purity N_(2) and H_(2) at high temperatures and pressures,which consumes about 1%of the total energy production and causes 1.4% of global CO_(2) emissions.The environmentally friendly electrochemical nitrogen reduction reaction(NRR)with low energy consumption is a promising alternative to the conventional Haber-Bosch process.However,the main issue is the low Faradaic efficiency and NH3 selectivity of electrochemical NRR,caused by inert nitrogen molecules and competitive hydrogen evolution reaction.As one of the cheapest and most abundant transition metals widely utilized in the Haber-Bosch process,the Fe element has presented the potential high performance for the electrochemical NRR.This article summarizes recent advances and research progress in non-noble Fe-based catalysts used for NH_(3) electrosynthesis.Various synthetic protocols,structure/morphology modification,performance improvement,and reaction mechanisms are comprehensively presented.Based on recent experimental and theoretical studies,we aim to illuminate the structure-property relationship and offer an excellent opportunity for engineering advanced Fe-based catalysts for nitrogen fixation.The most critical challenges and opportunities for Fe-based catalysts are also provided.This review would open up a promising avenue toward developing platinum-group-metal-free catalysts for electrochemical NRR applications in the future.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
Fe-based metallic glasses have garnered significant attention due to their low coercivity force and core loss.Enhancing the saturation magnetic flux density(Bs)of Fe-based metallic glasses is crucial for their industr...Fe-based metallic glasses have garnered significant attention due to their low coercivity force and core loss.Enhancing the saturation magnetic flux density(Bs)of Fe-based metallic glasses is crucial for their industry applications.This work constructed a dataset comprising330 training data and 157 test data.The support vector regression model surpassed the tree-based ensemble models in the test set and demonstrated comparable accuracy to the tree-based ensemble models in the training set.Additionally,we proposed an indicator for Bsbased on symbolic regression.This newly proposed indicator exhibits a Pearson correlation coefficient exceeding 0.92 with Bs.The present work provides a simple and accurate formula for predicting the Bsof Fe-based amorphous alloys,demonstrating the effectiveness of machine learning approaches in discovering novel soft magnetic materials.展开更多
The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound(VOC), carbonyl compoun...The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound(VOC), carbonyl compound and particle-phase polycyclic aromatic hydrocarbon(PAH) emissions were tested at European Steady State Cycle(ESC) to study unregulated emissions from a diesel engine with a fuel-borne catalyst and diesel particulate filter(FBC–DPF). An Fe-based fuel-borne catalyst was used for this study. According to the results, brake specific emissions of total VOCs without and with DPF were 4.7 and4.9 mg/kWh, respectively, showing a 4.3% increase. Benzene and n-undecane emissions increased and toluene emission decreased, while other individual VOC emissions basically had no change. When retrofitted with the FBC–DPF, total carbonyl compound emission decreased 15.7%, from 25.8 to 21.8 mg/kWh. The two highest carbonyls, formaldehyde and acetaldehyde, were reduced from 20.0 and 3.7 to 16.5 and 3.3 mg/kWh respectively. The specific reactivity(SR) with DPF was reduced from 6.68 to 6.64 mg/kWh. Total particle-phase PAH emissions decreased 66.4% with DPF compared to that without DPF. However, the Benzo[a]pyrene equivalent(BaPeq) with DPF had increased from 0.016 to 0.030 mg/kWh.Fluoranthene and Pyrene had the greatest decrease, 91.1% and 88.4% respectively. The increase of two- and three-ring PAHs with DPF indicates that the fuel-borne catalyst caused some gas-phase PAHs to adsorb on particles. The results of this study expand the knowledge of the effects of using a particulate filter and a Fe-based fuel-borne catalyst on diesel engine unregulated emissions.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
The design of efficient and robust non-precious metal electrocatalysts towards oxygen evolution reaction(OER)is of great value for developing green energy technologies.The in-situ formed high-valence(oxy)hydroxides sp...The design of efficient and robust non-precious metal electrocatalysts towards oxygen evolution reaction(OER)is of great value for developing green energy technologies.The in-situ formed high-valence(oxy)hydroxides species during the reconstruction process of pre-catalysts are recognized as the real contributing sites for OER.However,pre-catalysts generally undergo a slow and inadequate self-reconstruction.Herein,we reported a PO^(3-)_(4)optimized CoFe-based OER catalysts with amorphous structure,which enables a fast and deep reconstruction during the OER process.The amorphous structure induced by ligands PO^(3-)_(4)is prone to evolution and further form active species for OER.The electron interaction between metal sites can be modulated by electron-rich PO^(3-)_(4),which promotes generation of high active CoOOH.Simultaneously,the etching of PO^(3-)_(4)from the pre-catalysts during the catalytic process is in favor of accelerating the self-reconstruction.As a result,as-prepared precatalyst can generate high active CoOOH at a low potential of 1.4 V and achieve an in-depth reconstructed nanosheet structure with abundant OER active sites.Our work provides a promising design of pre-catalysts for realizing efficient catalysis of water oxidation.展开更多
基金the Haihe Laboratory of Sus-tainable Chemical Transformations for financial support(No.24HHWCSS00009).
文摘Ammonia is essential for agriculture and,as a next-generation carbon-free fuel,typically produced through the Haber-Bosch method.This process requires high temperature and pressure,leading to significant energy consumption and greenhouse gas emissions.Therefore,achieving ammonia synthesis under milder conditions has been a long-standing goal.In this study,we design and synthesize a series of CeO_(2)-modified Fe/carbon-based catalysts with varying amounts of CeO_(2)(Ce_(x)Fe_(y)/C).The catalyst Ce_(2)Fe_(5)/C demonstrates an ammonia yield rate of 3.5 mmol/(g·h),which is 44 times greater than that of Fe/C and 8 times greater than that of commercial Fe-based catalysts at 300℃and 1 MPa.Temperature-programmed desorption experiments show that Ce_(2)Fe_(5)/C has enhanced nitrogen adsorption capabilities.Multiple analyses confirm that the CeO_(2)in Ce_(2)Fe_(5)/C is rich in oxygen vacancies,which can provide electrons to Fe,facilitating nitrogen adsorption,dissociation,and activity in low-temperature ammonia synthesis.
基金financially supported by the National Key R&D Program of China (2023YFB4104501)the National Natural Science Foundation of China (22372165)+2 种基金the Liaoning Binhai Laboratory (LBLA-2024-01)the Grant. YLU-DNL Fund (2023001)DICP (Grant: DICP I202457)
文摘Regulating the location of the metal promoters plays a vital role in catalyst structure and its catalytic behavior during CO_(2)hydrogenation to higher alcohols.Herein,we selected the metal promoters with a precipitation pH similar to that of Cu^(2+)or Fe^(3+)to prepare a series of CuFe-based catalysts.Characterization results show that doping Al or Cr promoter,located with the Fe phase,suppressed the excessive carburization of the Fe phase and maintained an optimal proportion between Fe_(3)O_(4) and amorphous iron carbide(FeC_(x)),thus exhibiting superior catalytic activity and stability.In contrast,doping Zn or In promoter,located with the Cu phase,underwent a deeper carburization and formed more crys-talline FeC_(x),showing an inferior performance.The CuFeCr catalyst achieved the highest space-time yield of 330 mg g_(cat)^(-1)h^(-1)for higher alcohols among these catalysts.This study provides a novel strategy for opti-mizing the structure of the active phases for CO_(2)hydrogenation.
基金The research was financially sponsored by the Major Scientific Research Planning Project of Colleges and Universities in Anhui Province(Grant No.2023AH040147)the National Natural Science Foundation of China(Grant No.52074093)the Outstanding Youth Scientific Research Project of Colleges and Universities in Anhui Province(Grant No.2022AH030044).
文摘Metallurgical dust(MD)was used as raw material to prepare rare earth Ce-doped Fe-based catalysts.The results show that the Ce_(0.1)/AMD-300℃catalyst prepared from acid-modified diatomite(AMD)with mCe/mMD=0.1(m_(Ce)and m_(MD)are the mass of Ce and MD,respectively)after being roasted at 300℃can reach 99%NO_(x)removal rate in the wide temperature range of 230–430℃and exhibits excellent So_(2)and H_(2)o resistance.The MD effectively removes alkali metal elements by the modification process,increases the specific surface area and optimizes the pore structure of MD.The doping of Ce element makes Fe-based catalysts have more surface adsorbed oxygen O_(α)and a higher Ce^(3+)/Ce^(4+)ratio.Through ammonia temperature-programmed desorption and hydrogen temperature-programmed reduction,it was found that the strong interaction between cerium and iron promotes the formation of more oxygen cavities in the catalyst,thereby generating more active and easily reducible oxygen species and promoting the transformation of Brønsted acid site to Lewis acid site.The research results provide a theoretical basis for the preparation of efficient and inexpensive Fe-based catalysts from MD.
基金supported by the Key Project of Natural Science Foundation of Ningxia(NZ13010)the National Natural Science Foundation of China(21366025)~~
文摘Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.
文摘The influence of several anions on Fe-based Fischer-Tropsch catalyst, used in the synthesis of light olefins from synthesis gas, was studied. The results indicated that the addition of anions resulted in the reduction of catalytic activity. When the anion content in the catalyst was 500 ppm, the influence of different anions on the catalysis activity was as follows: S^2- 〉Cl^-〉SO4^2-〉NO3. The addition of S^2- improved the selectivity of total hydrocarbons in the products, and Cl^- reduced this selectivity but increased the olefin content in the total hydrocarbons at the same time. When the contents of S^2- and Clin the catalyst were less than 50 ppm, their influence could be ignored. The XRD results indicated that the addition of anions reduced the contents of α-Fe and FeaC, which were the active components in the catalyst.
基金the Spanish Science and InnovationMinistry for the financial support of Project ENE2008-06516-C03-01
文摘Catalytic decomposition of methane using a Fe-based catalyst for hydrogen production has been studied in this work. A Fe/Al2O3 catalyst previously developed by our research group has been tested in a fluidized bed reactor (FBR). A parametric study ot the effects of some process variables, including reaction temperature and space velocity, is undertaken. The operating conditions strongly affect the catalyst performance. Methane conversion was increased by increasing the temperature and lowering the space velocity. Using temperatures between 700 and 900℃ and space velocities between 3 and 6 LN/(gcat·h), a methane conversion in the range of 25%-40% for the gas exiting the reactor could be obtained during a 6 h run. In addition, carbon was deposited in the form of nanofilaments (chain like nanofibers and multiwall nanotubes) with similar properties to those obtained in a fixed bed reactor.
基金supported by the National Key Research and Development Program of China(2021YFB4000400)the National Natural Science Foundation of China(22222801,22038002,92361303,22478075,22472028,and 22108037)the Key R&D Plan of Shanghai Science and Technology Commission(21DZ1209002).
文摘Achieving green ammonia(NH_(3))synthesis requires developing effective catalysts under mild conditions.However;the competitive adsorption of N2 and H_(2);as well as the strong binding of N-containing intermediates on the catalyst;greatly inhibits the active sites for efficient NH_(3) synthesis.Here;we constructed a series of ZrH_(2)-modified Fe catalysts with dual active sites to address these issues and realized efficient NH_(3) synthesis under mild conditions.Our study shows that ZrH_(2) can not only provide active sites for H_(2) activation but also transfer electrons to Fe sites for accelerating N2 activation.The interaction between Fe and ZrH_(2) over 40ZrH_(2)-Fe leads to a decrease in work function and a downward shift of the d-band center;which is conducive to N2 activation and NH_(3) desorption;respectively.The utilization of distinct sites for activating different reactants can avoid the competitive adsorption of N2 and H_(2);leading to excellent NH_(3) synthesis activity of the 40 wt.%ZrH_(2)-mediated Fe catalyst.As a result;40ZrH_(2)-Fe exhibits a high NH_(3) synthesis rate of 23.3 mmol gcat-1h-1at 400℃and 1 MPa and robust stability during 100 h time-on-stream.
基金supported by the Ministry of Higher Education,Science and Innovation,and the Slovenian Research Agency(ARIS)throughresearch grants J7-4638 and J2-4441.
文摘The development of human industry inevitably leads to excessive carbon dioxide(CO_(2))emissions.It can cause critical ecological consequences,primarily global warming and ocean acidification.In this regard,close attention is paid to the carbon capture,utilization,and storage concept.The key component of this concept is the catalytic conversion of CO_(2)into valuable chemical compounds and fuels.Light olefins are one of the most industrially important chemicals,and their sustainable production via CO_(2)hydrogenation could be a prospective way to reach carbon neutrality.Fe-based materials are widely recognized as effective thermocatalysts and photothermal catalysts for that process thanks to their low cost,high activity,and good stability.This review critically examines the most recent progress in the development and optimization of Fe-based catalysts for CO_(2)hydrogenation into light olefins.Particular attention is paid to understanding the roles of catalyst composition,structural properties,and promoters in enhancing catalytic activity,selectivity,and stability.
基金supported by the National Natural Science Foundation of China(No.22308322)the Science Foundation of Donghai Laboratory(No.DH-2022ZY0010)the R&D Project of State Grid Corporation of China(No.5108-202218280A-2-439-XG).
文摘Renewable energy-driven water electrolysis is considered as an environmentally friendly hydrogen(H2)production technology.Replacing the oxygen evolution reaction(OER)with the urea oxidation reaction(UOR)is a more effective way to improve the energy efficiency of H2 generation.Herein,a highly effi-cient 2D NiFeMo-based UOR catalyst and 1D NiFeMo-based HER catalyst are prepared by adjusting the concentration of MoO_(4)^(-).The MoO_(4)^(-)can serve as the key regulator to adjust the balance between the electrolytic dissociation(α)of the reactants and the supersaturation(S)to modulate the morphological and electronic structure.The prepared 2D NiFeMo nanosheet UOR catalyst and 1D NiFeMo nanorod HER catalyst can achieve a current density of 100 mA cm^(−2)at a potential of 1.36 and 0.062 V,respectively.In a HER/UOR system,a cell voltage of 1.58 V is needed to achieve a current density of 100 mA cm^(−2).The HER/UOR system operated stably for over 60 h with 3 times the direct water electrolysis current den-sity.Moreover,the in situ Raman characterization coupled with XPS analysis clarifies that the addition of high-valence Mo can lower the transition energy barrier between the low and high oxidation state of Ni,which in turn lowers the overpotential of UOR.This work provides a novel strategy for synthesizing morphology-dependent electrocatalysts for different catalytic systems.
基金supported by the Jiangxi Provincial Natural Science Foundation of China(Grant number 20224BAB204049)the National Natural Science Foundation of China(Grant number 52205194)the Fund Project of Jiangxi Provincial Department of Education(Grant number GJJ2200602)。
文摘Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been explored to improve the surface performance and prolong service life of these parts.Among these technologies,laser cladding has shown promise in producing Fe-based alloy coatings with superior interfacial bonding properties to the Fe-C alloy substrate.Additionally,the microstructure of the Fe-based alloy coating is more uniform and the grain size is finer than that of surfacing welding,thermal spraying,and plasma cladding,and the oxide film of alloying elements on the coating surface can improve the coating performance.However,Fe-based alloy coatings produced by laser cladding typically exhibit lower hardness,lower wear resistance,corrosion resistance,and oxidation resistance compared to coatings based on Co and Ni alloys.Moreover,these coatings are susceptible to defects such as pores and cracks.To address these limitations,the incorporation of rare-earth oxides through doping in the laser cladding process has garnered significant attention.This approach has demonstrated substantial improvements in the microstructure and properties of Fe-based alloy coatings.This paper reviewed recent research on the structure and properties of laser-cladded Fe-based alloy coatings doped with various rare earth oxides,including La_(2)O_(3),CeO_(2),and Y_(2)O_(3).Specifically,it discussed the effects of rare earth oxides and their concentrations on the structure,hardness,friction,wear,corrosion,and oxidation characteristics of these coatings.Furthermore,the mechanisms by which rare earth oxides influence the coating’s structure and properties were summarized.This review aimed to serve as a valuable reference for the application and advancement of laser cladding technology for rare earth modified Fe-based alloy coatings.
基金supported by Liaoning Joint Fund of NSFC(No.U1908219)。
文摘The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were investigated.The DCT samples were obtained by subjecting the as-annealed samples to a thermal cycling process between the temperature of the supercooled liquid zone and the temperature of liquid nitrogen.Through flat plate bending testing,hardness measurements,and nanoindentation experiment,it is found that the bending toughness of the DCT samples is improved and the soft magnetic properties are also slightly enhanced.These are attributed to the rejuvenation behavior of the DCT samples,which demonstrate a higher enthalpy of relaxation.Therefore,DCT is an effective method to enhance the bending toughness of Fe-based amorphous nanocrystalline alloys without degrading the soft magnetic properties.
基金support from the National Natural Science Foundation of China(No.52231006)Junqiang Wang acknowledges financial support from the National Key R&D Program of China(No.2018YFA0703600)the National Natural Science Foundation of China(Nos.92163108 and 52222105).
文摘Annealing has been a popular method to improve the soft magnetism of metallic glasses (MGs), which however usually makes MGs brittle and difficult to process. Here, it is demonstrated that the embrittled Fe-based MG can be reductilized and the coercivity can be further lowered through the rejuvenation of memory effect. The synchronous improvement in the plasticity and soft magnetic properties is attributed to the combination effects of releasing much residual stress, decreasing the magnetic anisotropy, and homogenizing the glasses during the rejuvenation process. The current work opens a new perspective to improve the properties of MGs by utilizing the memory effect and holds promising commercial application potential.
基金supported by the National Natural Science Foundation of China(no.52374301)the Open Project of Guangxi Key Laboratory of Electrochemical Energy Materials(no.GXUEEM2024001)+2 种基金the Hebei Provincial Natural Science Foundation(no.E2024501010)the Shijiazhuang Basic Research Project(no.241790667A)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H)。
文摘Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cathode materials influence the cost and energy output of SIBs.Therefore,the development of advanced cathode materials is crucial for the practical application of SIBs.Among various cathode materials,layered transition metal oxides(LTMOs)have received widespread attention owing to their straightforward preparation,abundant availability,and cost-competitiveness.Notably,layered Fe-based oxide cathodes are deemed to be one of the most promising candidates for the lowest price and easy-to-improve performance.Nevertheless,the challenges such as severe phase transitions,sluggish diffusion kinetics and interfacial degradation pose significant hurdles in achieving high-performance cathodes for SIBs.This review first briefly outlines the classification of layered structures and the working principle of layered oxides.Then,recent advances in modification strategies employed to address current issues with layered iron-based oxide cathodes are systematically reviewed,including ion doping,biphasic engineering and surface modification.Furthermore,the review not only outlines the prospects and development directions for layered Fe-based oxide cathodes but also provides novel insights and directions for future research endeavors for SIBs.
基金This work was supported by the National Natural Science Foundation of China(No.22473001)the Natural Science Funds for Distinguished Young Scholar of Anhui Province(1908085J08)the University An-nual Scientific Research Plan of Anhui Province(2022AH010013).
文摘The performance of proton exchange membrane fuel cells depends heavily on the oxygen reduction reaction(ORR)at the cathode,for which platinum-based catalysts are currently the standard.The high cost and limited availability of platinum have driven the search for alternative catalysts.While FeN4 single-atom catalysts have shown promising potential,their ORR activity needs to be further enhanced.In contrast,dual-atom catalysts(DACs)offer not only higher metal loading but also the ability to break the ORR scaling relations.However,the diverse local structures and tunable coordination environments of DACs create a vast chemical space,making large-scale computational screening challenging.In this study,we developed a graph neural network(GNN)-based framework to predict the ORR activity of Fe-based DACs,effectively addressing the challenges posed by variations in local catalyst structures.Our model,trained on a dataset of 180 catalysts,accurately predicted the Gibbs free energy of ORR intermediates and overpotentials,and identified 32 DACs with superior catalytic activity compared to FeN4 SAC.This approach not only advances the design of high-performance DACs,but also offers a powerful computational tool that can significantly reduce the time and cost of catalyst development,thereby accelerating the commercialization of fuel cell technologies.
基金National Natural Science Foundation of China,Grant/Award Numbers:21902021,21908017Fundamental Research Funds for the Central Universities,Grant/Award Numbers:DUT20RC(4)020,DUT20RC(4)018+1 种基金Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering,Grant/Award Numbers:KLIEEE-20-01,KLIEEE-21-02Supercomputing Center of Dalian University of Technology。
文摘As one of the most important chemicals and carbon-free energy carriers,ammonia(NH3)has significant energy-related applications in industry and agriculture.Ninety percent of NH_(3) is produced by the Haber-Bosch process using high-purity N_(2) and H_(2) at high temperatures and pressures,which consumes about 1%of the total energy production and causes 1.4% of global CO_(2) emissions.The environmentally friendly electrochemical nitrogen reduction reaction(NRR)with low energy consumption is a promising alternative to the conventional Haber-Bosch process.However,the main issue is the low Faradaic efficiency and NH3 selectivity of electrochemical NRR,caused by inert nitrogen molecules and competitive hydrogen evolution reaction.As one of the cheapest and most abundant transition metals widely utilized in the Haber-Bosch process,the Fe element has presented the potential high performance for the electrochemical NRR.This article summarizes recent advances and research progress in non-noble Fe-based catalysts used for NH_(3) electrosynthesis.Various synthetic protocols,structure/morphology modification,performance improvement,and reaction mechanisms are comprehensively presented.Based on recent experimental and theoretical studies,we aim to illuminate the structure-property relationship and offer an excellent opportunity for engineering advanced Fe-based catalysts for nitrogen fixation.The most critical challenges and opportunities for Fe-based catalysts are also provided.This review would open up a promising avenue toward developing platinum-group-metal-free catalysts for electrochemical NRR applications in the future.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金financially supported by Shanghai Pujiang Program(No.23PJ1403500)GuangDong Basic and Applied Basic Research Foundation(No.2023A1515110901)+2 种基金Shenzhen Pengcheng Peacock Project(No.NA11409004)the National Natural Science Foundation of China(Nos.U22B2064 and 51105102)and Shanghai Rising-Star Program Yangfan Project(No.23YF1411900)。
文摘Fe-based metallic glasses have garnered significant attention due to their low coercivity force and core loss.Enhancing the saturation magnetic flux density(Bs)of Fe-based metallic glasses is crucial for their industry applications.This work constructed a dataset comprising330 training data and 157 test data.The support vector regression model surpassed the tree-based ensemble models in the test set and demonstrated comparable accuracy to the tree-based ensemble models in the training set.Additionally,we proposed an indicator for Bsbased on symbolic regression.This newly proposed indicator exhibits a Pearson correlation coefficient exceeding 0.92 with Bs.The present work provides a simple and accurate formula for predicting the Bsof Fe-based amorphous alloys,demonstrating the effectiveness of machine learning approaches in discovering novel soft magnetic materials.
基金financial support from the National Natural Science Foundation of China (No. 51276021)the Development Projects of Shandong Province Science and Technology (No. 2011YD17001)
文摘The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound(VOC), carbonyl compound and particle-phase polycyclic aromatic hydrocarbon(PAH) emissions were tested at European Steady State Cycle(ESC) to study unregulated emissions from a diesel engine with a fuel-borne catalyst and diesel particulate filter(FBC–DPF). An Fe-based fuel-borne catalyst was used for this study. According to the results, brake specific emissions of total VOCs without and with DPF were 4.7 and4.9 mg/kWh, respectively, showing a 4.3% increase. Benzene and n-undecane emissions increased and toluene emission decreased, while other individual VOC emissions basically had no change. When retrofitted with the FBC–DPF, total carbonyl compound emission decreased 15.7%, from 25.8 to 21.8 mg/kWh. The two highest carbonyls, formaldehyde and acetaldehyde, were reduced from 20.0 and 3.7 to 16.5 and 3.3 mg/kWh respectively. The specific reactivity(SR) with DPF was reduced from 6.68 to 6.64 mg/kWh. Total particle-phase PAH emissions decreased 66.4% with DPF compared to that without DPF. However, the Benzo[a]pyrene equivalent(BaPeq) with DPF had increased from 0.016 to 0.030 mg/kWh.Fluoranthene and Pyrene had the greatest decrease, 91.1% and 88.4% respectively. The increase of two- and three-ring PAHs with DPF indicates that the fuel-borne catalyst caused some gas-phase PAHs to adsorb on particles. The results of this study expand the knowledge of the effects of using a particulate filter and a Fe-based fuel-borne catalyst on diesel engine unregulated emissions.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金financially supported by the National Natural Science Foundation of China (Grants Nos.51772338,51972349,91963210 and U1801255).
文摘The design of efficient and robust non-precious metal electrocatalysts towards oxygen evolution reaction(OER)is of great value for developing green energy technologies.The in-situ formed high-valence(oxy)hydroxides species during the reconstruction process of pre-catalysts are recognized as the real contributing sites for OER.However,pre-catalysts generally undergo a slow and inadequate self-reconstruction.Herein,we reported a PO^(3-)_(4)optimized CoFe-based OER catalysts with amorphous structure,which enables a fast and deep reconstruction during the OER process.The amorphous structure induced by ligands PO^(3-)_(4)is prone to evolution and further form active species for OER.The electron interaction between metal sites can be modulated by electron-rich PO^(3-)_(4),which promotes generation of high active CoOOH.Simultaneously,the etching of PO^(3-)_(4)from the pre-catalysts during the catalytic process is in favor of accelerating the self-reconstruction.As a result,as-prepared precatalyst can generate high active CoOOH at a low potential of 1.4 V and achieve an in-depth reconstructed nanosheet structure with abundant OER active sites.Our work provides a promising design of pre-catalysts for realizing efficient catalysis of water oxidation.