The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report...The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.展开更多
The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and...The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.展开更多
The Panzhihua,Hongge,and Baima Fe-Ti-V oxide deposits in the Panzhihua-Xichang(Panxi) region are hosted in large layered mafic-ultramafic intrusions.The layered intrusions intrude either the Neoproterozoic Dengying Fo...The Panzhihua,Hongge,and Baima Fe-Ti-V oxide deposits in the Panzhihua-Xichang(Panxi) region are hosted in large layered mafic-ultramafic intrusions.The layered intrusions intrude either the Neoproterozoic Dengying Formation,composed mainly of limestone,or the Paleoproterozoic Hekou Formation,composed of meta-sedimentary-volcanic rocks.It remains unclear if the wall rocks have been involved during the fractionation of magmas and have affected the sequence of crystallization of Fe-Ti oxide.Volatiles and their C-H-O isotopic compositions of magnetite,apatite,clinopyroxene,and plagioclase of different types of ores from the three intrusions are analyzed using a technique of stepwise heating mass spectrometer to evaluate the role of wall rocks in the formation of Fe-Ti oxide ores.Volatiles released from magnetite are composed mainly of H 2 O and CO 2,whereas the other minerals are composed mainly of H 2 O,CO 2 and H 2.At 800-1200°C temperature interval,the average 13 C values of CO 2 of all the minerals from the three intrusions range from 7.7‰ to 13.5‰ and the average 18 O CO 2 values from 19.1‰ to 19.5‰,which are scattered in a mixed field with basalt and the two types of wall rocks as end-members,indicating that CO 2 from the wall rocks may have been involved in the magmas from which the three intrusions formed.At 400-800 C temperature interval,both 13 C values(13.7‰ to 17.9‰ on the average) and 18 O values(16.2‰ to 19.2‰ on the average) of CO 2 of all the minerals are lower than those for 800-1200 C temperature interval,and much closer to the values of the wall rocks.Abundant H 2 O released at the 400-800 C temperature interval has relatively low D values ranging from 90‰ to 115‰,also indicating the involvement of fluids from the wall rocks.The average bulk contents of volatiles released from magnetite of the Hongge,Baima,and Panzhihua intrusions are 4891,2996,and 1568 mm 3 STP/g,respectively,much higher than those released from other minerals in total,which are 382,600,and 379 mm 3 STP/g,respectively,indicating that magnetite crystallized from magmas with much more volatiles than other minerals.This can be interpreted as that crystallization of clinopyroxene and plagioclase in the early fractionation of magmas resulted in volatiles such as H 2 O that were eventually enriched in the residual magmas and,at the same time,fluids from the wall rocks may have been involved in the magmas and were trapped in magnetite,which crystallized later than clinopyroxene and plagioclase.展开更多
Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching t...Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching temperature and reaction time on leaching process were explored. The leaching efficiency of Gabonese manganese oxide ore reached almost 100% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 2.5 molFL, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching efficiency of Xiangxi manganese oxide ore reached 99.8% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 1.7 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching process followed the internal diffusion controlled kinetic model, and the apparent activation energies of Gabonese manganese oxide ore and Xiangxi manganese oxide ore were calculated to be 38.2 kJ/mol and 20.4 kJ/mol, respectively. The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of XRD analysis and SEM analysis.展开更多
Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leachi...Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leaching temperature and pH on Zn leaching recovery and the dissolution of impurities such as Ca,Mg,Cu,Ni,Fe,Pb and Cd were investigated.Results show that Ca,Mg and Fe in ores were hardly dissolved in alkalescent iminodiacetate aqueous solution,while valuable metals such as Cu,Ni,Pb and Cd were partly dissolved into leaching liquor with Zn.The recovery of Zn reaches 76.6% when the ores were leached for 4 h at 70 ℃ by 0.9 mol/L iminodiacetate aqueous solution with pH of 8 and L/S of 5:1.展开更多
Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at F...Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(&gt;1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.展开更多
The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to ...The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to solid ratio(L/S ratio), stirring speed, leaching temperature, leaching time and H2SO4 concentration on the leaching rates of Mn and Fe during the reduction–acid leaching process were discussed. The leaching rates of 96.47% for Mn and 19.24% for Fe were obtained under the optimized conditions of mass ratio of Ca S to manganese oxide ore 1:6.7, L/S ratio 5:1, stirring speed 300 r/min, reduction temperature of 95 °C for 2.0 h in the reduction process and leaching stirring speed of 200 r/min, H2SO4 concentration of 1.5 mol/L, leaching temperature of 80 °C for 5 min in the leaching process. In addition, this process can be employed in the recovery of manganese from various manganese oxide ores, and Mn leaching rate above 95% is obtained.展开更多
To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. Th...To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.展开更多
Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongg...Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.展开更多
A sequence of gabbros showing isotropic,layered and fine-grained textures is exposed in the Nalaqing mine at the southern tip of the~260 Ma Panzhihua intrusion,SW China.The field relations,structure,texture and miner...A sequence of gabbros showing isotropic,layered and fine-grained textures is exposed in the Nalaqing mine at the southern tip of the~260 Ma Panzhihua intrusion,SW China.The field relations,structure,texture and mineralogy of the rocks indicate that the sequence represents the transition between the Lower zone and Middle zone of the intrusion.Isotropic gabbros characteristic of the Lower zone pass upward to layered gabbros of the Middle zone through a~5 m-thick microgabbro sheet,within and close to which small-scaled, concordant Fe-Ti oxide ore horizons are identified.Strong fractionation between HFSE and REE in a subset of samples is ascribed to cumulus titanomagnetite into which HFSE are preferentially incorporated over REE,as reflected in the parallel relations between Nb/La,Hf/Sm and Ti/Ti*.Both the isotropic and layered gabbros display cumulate textures and have similar mineral compositions(Mg# of clinopyroxene =~76-79 and An59-61),isotopic compositions[(87Sr/86Sr)i = 0.7044-0.7045 andεNd(t) = +2.4 to +3.9]and trapped liquid contents inferred from Zr abundance(~17-34 ppm).However,there are substantial variations in elemental abundances(V,Cr and PGE) and ratios(Ti/V,La/Yb,Ba/Y and Cu/Pd) between the two types of gabbros,features that cannot be explained by cumulate formation from a common magma in a closed system.The microgabbros generally resemble high-Ti Emeishan basalts in major element compositions,but their low trace element abundances indicate some lost of residual liquid is inevitable despite rapid nucleation and cooling.Combined with available data and observations,we propose a model involving in-situ crystallization,followed by magma recharge and closed-system fractionation to explain the formation of texturally distinctive gabbros at Nalaqing and the evolution of the lower part of the Panzhihua intrusion.展开更多
The reduction process of manganese dioxide in low-grade manganese ore by biomass roasting was investigated.The calcine of manganese oxide ore was further leached by sulphuric acid, the manganese in ore can be converte...The reduction process of manganese dioxide in low-grade manganese ore by biomass roasting was investigated.The calcine of manganese oxide ore was further leached by sulphuric acid, the manganese in ore can be converted into manganese sulfate.Effects of the mass ratio of manganese ore to sawdust, roasting temperature and time, leaching temperature and time, leaching agent concentration and liquid-solid ratio were studied.97.71% of manganese recovery can be achieved under the optimal conditions:the mass ratio of manganese ore to sawdust of 5:1, roasting temperature at 500℃ for 40 min, leaching temperature at 60℃ for 40 min, sulphuric acid concentration of 1 mol/L and liquid-solid ratio of 10:1.Other types of low-grade manganese ore like Guilin ore, Nanning ore and Gongcheng ore were tested and the same results were obtained.展开更多
The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is ...The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.展开更多
The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficie...The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.展开更多
Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore c...Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the railings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃with a mixing speed of S00 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/ms) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning.展开更多
Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first t...Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.展开更多
An environmentally friendly and resource-conserving route to the clean production of electrolytic manganese was developed,in which the electrolytic manganese residue(EMR)was initially calcined for cement buffering;the...An environmentally friendly and resource-conserving route to the clean production of electrolytic manganese was developed,in which the electrolytic manganese residue(EMR)was initially calcined for cement buffering;then the generated SO2-containing flue gas was managed using manganese oxide ore and anolyte(MOOA)desulfurization;at last,the desulfurized slurry was introduced to the electrolytic manganese production(EMP).Results showed that 4.0 wt%coke addition reduced the sulfur of calcined EMR to 0.9%,thereby satisfying the cement-buffer requirement.Pilot-scale desulfurization showed that about 7.5 vol%of high SO2 containing flue gas can be cleaned to less than 0.1 vol%through a five-stage countercurrent MOOA desulfurization.The desulfurized slurry had 42.44 g·L-Mn2+and 1.92 g·L-1 S2 O62-,which was suitable for electrowinning after purification,and the purity of manganese product was 99.93%,satisfy the National Standard of China YB/T051-2015.This new integrated technology fulfilled 99.7%of sulfur reutilization from the EMR and 94.1%was effectively used to the EMP.The MOOA desulfurization linked the EMP a closed cycle without any pollutant discharge,which promoted the cleaner production of EMP industry.展开更多
The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The resul...The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.展开更多
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and o...The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.展开更多
The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc...The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.展开更多
基金financially supported by the National Natural Science Foundation of China(41372102)Chinese Geological Survey Project(DD20160071)
文摘The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.
基金supported by the department of Geoscience,University of Nevada,Las Vegas,NV 89154,USAfinanced by the French Government Laboratory of Excellence Initiative(No.ANR-10-LABX-0006)the Region Auvergne and the European Regional Development Fund。
文摘The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.
基金supported by the Main Direction Program of Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KZCX2-YW-Q04-06)National Basic Research Program of China (Grant No. 2011CB808903)+1 种基金National Natural Science Foundation of China (Grant No. 41073030)Hundred Talents Program of the Chinese Academy of Sciences to CYW
文摘The Panzhihua,Hongge,and Baima Fe-Ti-V oxide deposits in the Panzhihua-Xichang(Panxi) region are hosted in large layered mafic-ultramafic intrusions.The layered intrusions intrude either the Neoproterozoic Dengying Formation,composed mainly of limestone,or the Paleoproterozoic Hekou Formation,composed of meta-sedimentary-volcanic rocks.It remains unclear if the wall rocks have been involved during the fractionation of magmas and have affected the sequence of crystallization of Fe-Ti oxide.Volatiles and their C-H-O isotopic compositions of magnetite,apatite,clinopyroxene,and plagioclase of different types of ores from the three intrusions are analyzed using a technique of stepwise heating mass spectrometer to evaluate the role of wall rocks in the formation of Fe-Ti oxide ores.Volatiles released from magnetite are composed mainly of H 2 O and CO 2,whereas the other minerals are composed mainly of H 2 O,CO 2 and H 2.At 800-1200°C temperature interval,the average 13 C values of CO 2 of all the minerals from the three intrusions range from 7.7‰ to 13.5‰ and the average 18 O CO 2 values from 19.1‰ to 19.5‰,which are scattered in a mixed field with basalt and the two types of wall rocks as end-members,indicating that CO 2 from the wall rocks may have been involved in the magmas from which the three intrusions formed.At 400-800 C temperature interval,both 13 C values(13.7‰ to 17.9‰ on the average) and 18 O values(16.2‰ to 19.2‰ on the average) of CO 2 of all the minerals are lower than those for 800-1200 C temperature interval,and much closer to the values of the wall rocks.Abundant H 2 O released at the 400-800 C temperature interval has relatively low D values ranging from 90‰ to 115‰,also indicating the involvement of fluids from the wall rocks.The average bulk contents of volatiles released from magnetite of the Hongge,Baima,and Panzhihua intrusions are 4891,2996,and 1568 mm 3 STP/g,respectively,much higher than those released from other minerals in total,which are 382,600,and 379 mm 3 STP/g,respectively,indicating that magnetite crystallized from magmas with much more volatiles than other minerals.This can be interpreted as that crystallization of clinopyroxene and plagioclase in the early fractionation of magmas resulted in volatiles such as H 2 O that were eventually enriched in the residual magmas and,at the same time,fluids from the wall rocks may have been involved in the magmas and were trapped in magnetite,which crystallized later than clinopyroxene and plagioclase.
基金Project(2010FJ1011)supported by the Major Project of Hunan Science and Technology,ChinaProject(cstc2012ggB90002)supported by the Chongqing Key Science and Technology Program,China
文摘Manganese oxide ores from Gabon and Xiangxi were leached with waste tea as reductant in dilute sulfuric acid solution. The effects of waste tea dosage, concentration of sulfuric acid, liquid-to-solid ratio, leaching temperature and reaction time on leaching process were explored. The leaching efficiency of Gabonese manganese oxide ore reached almost 100% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 2.5 molFL, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching efficiency of Xiangxi manganese oxide ore reached 99.8% under the optimal condition which was determined as follows: manganese oxide ore to waste tea mass ratio of 10:1, sulfuric acid concentration of 1.7 mol/L, liquid-to-solid ratio of 7.5:1, leaching temperature of 368 K, time of 8 h. The leaching process followed the internal diffusion controlled kinetic model, and the apparent activation energies of Gabonese manganese oxide ore and Xiangxi manganese oxide ore were calculated to be 38.2 kJ/mol and 20.4 kJ/mol, respectively. The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of XRD analysis and SEM analysis.
基金Project (2007CB613604) supported by the National Basic Research Program of China
文摘Ida2--H2O system(iminodiacetate aqueous solution) was used to leach a low grade zinc oxide ore for Zn extraction.The effects of leaching time,liquid-solid ratio(L/S),total concentration of Ida2-([Ida2-]T),leaching temperature and pH on Zn leaching recovery and the dissolution of impurities such as Ca,Mg,Cu,Ni,Fe,Pb and Cd were investigated.Results show that Ca,Mg and Fe in ores were hardly dissolved in alkalescent iminodiacetate aqueous solution,while valuable metals such as Cu,Ni,Pb and Cd were partly dissolved into leaching liquor with Zn.The recovery of Zn reaches 76.6% when the ores were leached for 4 h at 70 ℃ by 0.9 mol/L iminodiacetate aqueous solution with pH of 8 and L/S of 5:1.
基金funding through South African National Science Foundation(NRF)Grant SA/China Project 67220 to SP and Mei-Fu ZhouGH also acknowledges the support of a doctoral fellowship from the NRF for 2011-2012
文摘Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(&gt;1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.
基金Project(21376273)supported by the National Natural Science Foundation of ChinaProject(2010FJ1011)supported by the Key Program of Science and Technology of Hunan Province,China
文摘The extraction of manganese from low-grade manganese oxide ores using Ca S derived from Ca SO4 as reductant was investigated. The effects of mass ratio of Ca S to ore, reduction temperature, reduction time, liquid to solid ratio(L/S ratio), stirring speed, leaching temperature, leaching time and H2SO4 concentration on the leaching rates of Mn and Fe during the reduction–acid leaching process were discussed. The leaching rates of 96.47% for Mn and 19.24% for Fe were obtained under the optimized conditions of mass ratio of Ca S to manganese oxide ore 1:6.7, L/S ratio 5:1, stirring speed 300 r/min, reduction temperature of 95 °C for 2.0 h in the reduction process and leaching stirring speed of 200 r/min, H2SO4 concentration of 1.5 mol/L, leaching temperature of 80 °C for 5 min in the leaching process. In addition, this process can be employed in the recovery of manganese from various manganese oxide ores, and Mn leaching rate above 95% is obtained.
基金Project(51204054)supported by the National Natural Science Foundation of ChinaProject(N110402012)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.
基金supported by the Research Grant Council of Hong Kong(HKU707012P)to MFZfrom a Chinese National "973" project (2011CB808903)+1 种基金a "CAS Hundred Talents" project under Chinese Academy of Sciences to CYWSouth African National Science Foundation Grant SA/China Project 67220 to SP and MFZ
文摘Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.
基金supported by the Research Grant Council of Hong Kong(HKU707012P)to MFZa post-doctoral fellowship awarded by the National Science Council(NSC), Taiwan to KNP
文摘A sequence of gabbros showing isotropic,layered and fine-grained textures is exposed in the Nalaqing mine at the southern tip of the~260 Ma Panzhihua intrusion,SW China.The field relations,structure,texture and mineralogy of the rocks indicate that the sequence represents the transition between the Lower zone and Middle zone of the intrusion.Isotropic gabbros characteristic of the Lower zone pass upward to layered gabbros of the Middle zone through a~5 m-thick microgabbro sheet,within and close to which small-scaled, concordant Fe-Ti oxide ore horizons are identified.Strong fractionation between HFSE and REE in a subset of samples is ascribed to cumulus titanomagnetite into which HFSE are preferentially incorporated over REE,as reflected in the parallel relations between Nb/La,Hf/Sm and Ti/Ti*.Both the isotropic and layered gabbros display cumulate textures and have similar mineral compositions(Mg# of clinopyroxene =~76-79 and An59-61),isotopic compositions[(87Sr/86Sr)i = 0.7044-0.7045 andεNd(t) = +2.4 to +3.9]and trapped liquid contents inferred from Zr abundance(~17-34 ppm).However,there are substantial variations in elemental abundances(V,Cr and PGE) and ratios(Ti/V,La/Yb,Ba/Y and Cu/Pd) between the two types of gabbros,features that cannot be explained by cumulate formation from a common magma in a closed system.The microgabbros generally resemble high-Ti Emeishan basalts in major element compositions,but their low trace element abundances indicate some lost of residual liquid is inevitable despite rapid nucleation and cooling.Combined with available data and observations,we propose a model involving in-situ crystallization,followed by magma recharge and closed-system fractionation to explain the formation of texturally distinctive gabbros at Nalaqing and the evolution of the lower part of the Panzhihua intrusion.
基金supported by the National Natural Science Foundation of China (No.50874067)
文摘The reduction process of manganese dioxide in low-grade manganese ore by biomass roasting was investigated.The calcine of manganese oxide ore was further leached by sulphuric acid, the manganese in ore can be converted into manganese sulfate.Effects of the mass ratio of manganese ore to sawdust, roasting temperature and time, leaching temperature and time, leaching agent concentration and liquid-solid ratio were studied.97.71% of manganese recovery can be achieved under the optimal conditions:the mass ratio of manganese ore to sawdust of 5:1, roasting temperature at 500℃ for 40 min, leaching temperature at 60℃ for 40 min, sulphuric acid concentration of 1 mol/L and liquid-solid ratio of 10:1.Other types of low-grade manganese ore like Guilin ore, Nanning ore and Gongcheng ore were tested and the same results were obtained.
基金financially supported by the National Natural Science Foundation of China(No.41372102)the National Basic Research Program of China(No.2014CB440803)the China Geological Survey(No.DD20160071)
文摘The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.
基金Project(2005BA639C) supported by the National Science and Technology Development of China
文摘The kinetic behavior of leaching copper from low grade copper oxide ore was investigated. The effects of leaching temperature, H2SO4 concentration, particle size of crude ore and agitation rate on the leaching efficiency of copper were also evaluated. And the kinetic equations of the leaching process were obtained. The results show that the leaching process can be described with a reaction model of shrinking core. The reaction can be divided into three stages. The first stage is the dissolution of free copper oxide and copper oxide wrapped by hematite-limonite ore. At this stage, the leaching efficiency is very fast (leaching efficiency is larger than 60%). The second stage is the leaching of diffiuent copper oxides, whose apparent activation energy is 43.26 kJ/mol. During this process, the chemical reaction is the control step, and the reaction order of H2SO4 is 0.433 84. The third stage is the leaching of copper oxide wrapped by hematite-limonite and silicate ore with apparent activation energy of 16.08 kJ/mol, which belongs to the mixed control.
基金Projects 50604016 supported by the National Natural Science Foundation of China2007BAB22B01 by the 11th Five-Year Plan of National Science and Technology of China
文摘Mexican copper ore is a mixed ore containing mainly copper oxide and some copper sulfide that responds well to flotation. The joint techniques of flotation and leaching were studied. The results indicate that an ore containing 19.01% copper could be obtained at a recovery ratio of 35.02% by using sodium sulfide and butyl xanthate flotation. Over 83.33% of the copper oxide can be recovered from the railings by leaching in suitable conditions, such as 1 h stirring at a temperature around 25 ℃with a mixing speed of S00 r/min, an H2SO4 concentration of 1.0 mol/L and a mass ratio of the ore-slurry-liquid to solid (mL/ms) of 3. The overall yield of refined ore after flotation and leaching is over 89.18% of the copper, which is much better than sole flotation or leaching. A copper product containing more than 99.9% copper was obtained by using the process: flotation-agitation leaching- solvent extraction-electro-winning.
基金the AbbasAbad copper mineShahrood University of Technology for their financial support during this research。
文摘Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.
基金supported by the National Key R&D Program of China(No.2018YFC0213405)。
文摘An environmentally friendly and resource-conserving route to the clean production of electrolytic manganese was developed,in which the electrolytic manganese residue(EMR)was initially calcined for cement buffering;then the generated SO2-containing flue gas was managed using manganese oxide ore and anolyte(MOOA)desulfurization;at last,the desulfurized slurry was introduced to the electrolytic manganese production(EMP).Results showed that 4.0 wt%coke addition reduced the sulfur of calcined EMR to 0.9%,thereby satisfying the cement-buffer requirement.Pilot-scale desulfurization showed that about 7.5 vol%of high SO2 containing flue gas can be cleaned to less than 0.1 vol%through a five-stage countercurrent MOOA desulfurization.The desulfurized slurry had 42.44 g·L-Mn2+and 1.92 g·L-1 S2 O62-,which was suitable for electrowinning after purification,and the purity of manganese product was 99.93%,satisfy the National Standard of China YB/T051-2015.This new integrated technology fulfilled 99.7%of sulfur reutilization from the EMR and 94.1%was effectively used to the EMP.The MOOA desulfurization linked the EMP a closed cycle without any pollutant discharge,which promoted the cleaner production of EMP industry.
基金Project(U1608254) supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02) supported by Zijin Mining Group Co.,Ltd.,China
文摘The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
文摘The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.
基金Projects(51774070,51204054)supported by the National Natural Science Foundation of ChinaProject(N150204009)supported by the Ministry of Education Basic Scientific Research Business Expenses,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘The orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore with NaOH aiming to comprehensively utilize zinc oxide ore.The optimized reaction conditions were molar ratio of NaOH to zinc oxide ore 6:1,roasting temperature 450°C,holding time 150 min.The molar ratio of NaOH to zinc oxide ore was the most predominant factor affecting the extraction ratios of zinc oxide and silica.The mineral phase transformations were investigated by testing the phases of specimens obtained at different temperatures.The process was that silica reacted with molten NaOH to form Na_2SiO_3 at first,then transformed into Na_4SiO_4 with temperature rising.ZnCO_3 and its decomposing product ZnO reacted with NaOH to form Na_2ZnO_2.Na_2ZnSiO_4was also obtained.The reaction rate was investigated using unreacted shrinking core model.Two models used were chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the reaction rate was combine-controlled by two models.The activation energy and frequency factor were obtained as 24.12 k J/mol and 0.0682,respectively.