The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is ...The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.展开更多
The Panzhihua mafic intrusion,which hosts a world-class Fe-Ti-V ore deposit,is in the western Emeishan region,SW China.The formation age(~260 Ma),and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of...The Panzhihua mafic intrusion,which hosts a world-class Fe-Ti-V ore deposit,is in the western Emeishan region,SW China.The formation age(~260 Ma),and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of the Emeishan large igneous province and has little crustal contamination.To assess ore genesis of the Panzhihua Fe-Ti-V ore deposit,two different models have been provided to explain the formation,namely silicate immiscibility and normal fractional crystallization.Silicate immiscibility occurring around 1,000℃at the late stage of basaltic magma evolution argues against the silicate immiscibility model.Apatite-hosted melt inclusion research indicates that silicate immiscibility occurred at the late stage of Panzhihua magma evolution,which may not have offered potential to form such large ore deposits as Panzhihua.Alternatively,continuous compositional variations of the Panzhihua intrusion and calculations using thermodynamic modelling software support the hypothesis that the Panzhihua deposit was formed by normal fractional crystallization.Reciprocal trace element patterns of the Panzhihua intrusion and nearby felsic rocks also coincide with the fractional crystallization model.Normal fractional crystallization of high-Ti basaltic magma played a key role in the formation of the Panzhihua Fe-Ti-V ore deposit.展开更多
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si...Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.展开更多
We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisti...We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.展开更多
Laser shock peening(LSP)was used to enhance the high-temperature oxidation resistance of laser melting deposited Ti45Al8Nb alloy.The microstructure and high-temperature oxidation behavior of the as-deposited Ti45Al8Nb...Laser shock peening(LSP)was used to enhance the high-temperature oxidation resistance of laser melting deposited Ti45Al8Nb alloy.The microstructure and high-temperature oxidation behavior of the as-deposited Ti45Al8Nb alloy before and after LSP were investigated by scanning electron microscopy,X-ray diffraction,and electron backscatter diffraction.The results indicated that the rate of mass gain in the as-deposited sample after LSP exhibited a decrease when exposed to an oxidation temperature of 900℃,implying that LSP-treated samples exhibited superior oxidation resistance at high temperatures.A gradient structure with a fine-grain layer,a deformed-grain layer,and a coarse-grain layer was formed in the LSP-treated sample,which facilitated the diffusion of the Al atom during oxidation,leading to the formation of a dense Al_(2)O_(3)layer on the surface.The mechanism of improvement in the oxidation resistance of the as-deposited Ti45Al8Nb alloy via LSP was discussed.展开更多
The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and...The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.展开更多
To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfu...To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.展开更多
Spinel lithium manganese oxide(LiMn_(2)O_(4), LMO) emerges as a promising cathode material for future stationary energy storage applications due to its high voltage, safety, cost-effectiveness, and electrochemical per...Spinel lithium manganese oxide(LiMn_(2)O_(4), LMO) emerges as a promising cathode material for future stationary energy storage applications due to its high voltage, safety, cost-effectiveness, and electrochemical performance. However,LMO suffers from rapid capacity degradation caused by the Jahn–Teller effect, Mn dissolution and side reactions. The mechanism remains unclear and even contradictory across various studies, impeding the advancement of high-performance LMO and its widespread utilization. In this study, 14 Ah commercial-level LMO batteries were manufactured and assessed.The mechanism of capacity attenuation in cycle-aged cells at room temperature(RT, 25℃) and high temperature(HT,55℃) storage cells was systematically investigated through the application of electrochemical quantitative methods. The results indicate specific capacity losses of approximately 6.26% and 2.55% for the cathodes in RT cycle-aged cells and HT storage cells, respectively, in comparison to fresh cells. These values are lower than the 12.54% and 6.99% capacity losses observed in RT cycle-aged cells and HT storage cells. While RT cycle-aging and HT storage conditions do not lead to irreversible capacity loss on the anode side. The results suggest that the primary causes of irreversible capacity degradation are not located on the cathode or anode. Nevertheless, significant polarization arises from the continuous growth of the solid electrolyte interphase(SEI), believed to be catalyzed by Mn deposited on the anode, which is considered harmful.This study elucidates that inhibiting the dissolution of Mn from the cathode, facilitating its transport in the electrolyte,promoting its deposition on the anode, and catalyzing the decomposition of the electrolyte are crucial factors for enhancing the performance of LMO batteries.展开更多
Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongg...Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.展开更多
Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a rel...Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny.展开更多
The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the meta...The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.展开更多
Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at F...Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(&gt;1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.展开更多
The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn ...The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn O nanostructures electrodeposited on graphene/glass substrates were investigated.The supporting reagent HMTA does not increase the density of nanorods,but it does remarkably improve the smoothness of the top edge surfaces and the hexagonal shape of the nanorods even at a low temperature of 75°C.Hydroxyl(OH-)ions from the HMTA suppress the sidewall growth of non-polar planes and promote the growth of Zn O on the polar plane to produce vertically aligned nanorods along the c axis.By contrast,the highly electronegative chlorine(Cl-)ions from the supporting reagent KCl suppress the growth of Zn O on the polar plane and promote the growth on non-polar planes to produce vertical stacking nanowall structures.HMTA was found to be able to significantly improve the crystallinity of the grown Zn O structures,as indicated by the observation of much lower FWHM values and a higher intensity ratio of the emission in the UV region to the emission in the visible region.Equimolar mixtures of Zn(NO3)2 6H2O and the supporting reagents HMTA and KCl seem to provide the optimum ratio of concentrations for the growth of high-density,uniform Zn O nanostructures.The corresponding transmittances for such molar ranges are approximately 55–58%(HMTA)and 63–70%(KCl),which are acceptable for solar cell and optoelectronic devices.展开更多
One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper be...One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper belt and as a result it has numerous potential areas as copper deposits. The purpose of this study is identifying possible potentialities of copper mining in less developed regions of Iran with basic modern technologies. In this study, laboratory investigations of this field were done on samples via leaching and the cementation method. According to the study purposes, acid concentration, temperature, time and pulp density were selected as the main factors that were tested in leaching studies. Moreover, pH, temperature, time and the amount of iron powder were factors which were tested for copper cementation. Optimum conditions of leaching studies with 99.11% recovery rate were obtained after 120 grams per liter of H2SO4, 80 degrees Celsius, 2 hours and 100 grams per liter of solid to liquid. On the other hand, optimum conditions of cementation by iron powder were resulted at more than 95% with a pH of 3, 45 degrees Celsius, 1 hour and 1.5 times more than the stoichiometric equation of required iron powder amount to precipitate copper.展开更多
The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report...The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.展开更多
A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained ...A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicarbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms,independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.展开更多
Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compos...Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors.展开更多
A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of F...A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of Fe-Ti-V oxide ore deposits.Our experimental results demonstrate that the sandwich-and trellis-type ilmenite lamellae in titanomagnetite of layered intrusions can be formed by the reaction of earlier crystallized ilmenite and the evolved parental magma.During evolution of parental basaltic magma,the Fe-Ti oxide should be composed of titanomagnetite+ilmenite in the earlier stage,but changed to titanomagnetite+titanomagnetite-ilmenite intergrowth±ilmenite at the later stage.Accordingly,the Panzhihua Fe-Ti oxide ores,which are mainly composed of titanomagnetite,should be formed earlier than the adjacent gabbro,in which titanomagnetite-ilmenite intergrowth is the major form of the Fe-Ti oxide.展开更多
Gallium oxide was deposited on a c-plane sapphire substrate by oxygen plasma-assisted pulsed laser deposition(PLD).An oxygen radical was generated by an inductive coupled plasma source and the effect of radio frequenc...Gallium oxide was deposited on a c-plane sapphire substrate by oxygen plasma-assisted pulsed laser deposition(PLD).An oxygen radical was generated by an inductive coupled plasma source and the effect of radio frequency(RF)power on growth rate was investigated.A film grown with plasma assistance showed 2.7 times faster growth rate.X-ray diffraction and Raman spectroscopy analysis showedβ-Ga2 O3 films grown with plasma assistance at 500℃.The roughness of the films decreased when the RF power of plasma treatment increased.Transmittance of these films was at least 80%and showed sharp absorption edge at 250 nm which was consistent with data previously reported.展开更多
Objective:Diabetic nephropathy(DN)is a deleterious microangiopathy of diabetes,constituting a critical determinant of fatality in diabetic patients.This work is purposed to disclose the effects and modulatory mechanis...Objective:Diabetic nephropathy(DN)is a deleterious microangiopathy of diabetes,constituting a critical determinant of fatality in diabetic patients.This work is purposed to disclose the effects and modulatory mechanism of BTG anti-proliferation factor 2(BTG2)during the pathological process of DN.Methods:BTG2 expression in kidney tissues of diabetic mice and high glucose(HG)-exposed human proximal tubular cell line HK-2 was assessed with Western blot and RT-qPCR.The diabetic mice model was constructed by streptozotocin injection and confirmed by the blood glucose level beyond 16.7 mmol/L.Hematoxylin and eosin(H&E)staining and measurement of kidney function hallmarks were conducted to assess kidney injury.Cell counting kit(CCK)-8 method and TUNEL assay appraised cell activity and apoptosis.Oil red O staining assayed lipid accumulation.Relevant commercial kits were used to estimate oxidative stress-related factors.Co-immunoprecipitation(Co-IP)assay testified the binding relationship of BTG2 with protein arginine methyltransferase 1(PRMT1).Results:BTG2 expression was significantly raised in renal tissues of diabetic mice and HK-2 cells exposed to HG.BTG2 deficiency improved viability and extenuated the apoptosis,lipid deposition as well as oxidative stress in HK-2 cells following HG exposure.In addition,PRMT1 was also overexpressed in HK-2 cells exposed to HG.BTG2 interacted with PRMT1 and positively modulated PRMT1 expression.The effects of BTG2 interference on viability,apoptosis,lipid deposition,and oxidative stress in HG-challenged HK-2 cells were partially abrogated by PRMT1 overexpression.Conclusion:Altogether,BTG2 might aggravate HK-2 cell injury in response to HG by binding with PRMT1,providing a novel target for the therapeutic strategy of DN.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41372102)the National Basic Research Program of China(No.2014CB440803)the China Geological Survey(No.DD20160071)
文摘The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.
基金co-supported by the China Geological Survey(Grant Nos.DD20230229,DD20190011,DD20221643)the National Key Research and Development Project of China(Grant No.2018YFC0603701)。
文摘The Panzhihua mafic intrusion,which hosts a world-class Fe-Ti-V ore deposit,is in the western Emeishan region,SW China.The formation age(~260 Ma),and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of the Emeishan large igneous province and has little crustal contamination.To assess ore genesis of the Panzhihua Fe-Ti-V ore deposit,two different models have been provided to explain the formation,namely silicate immiscibility and normal fractional crystallization.Silicate immiscibility occurring around 1,000℃at the late stage of basaltic magma evolution argues against the silicate immiscibility model.Apatite-hosted melt inclusion research indicates that silicate immiscibility occurred at the late stage of Panzhihua magma evolution,which may not have offered potential to form such large ore deposits as Panzhihua.Alternatively,continuous compositional variations of the Panzhihua intrusion and calculations using thermodynamic modelling software support the hypothesis that the Panzhihua deposit was formed by normal fractional crystallization.Reciprocal trace element patterns of the Panzhihua intrusion and nearby felsic rocks also coincide with the fractional crystallization model.Normal fractional crystallization of high-Ti basaltic magma played a key role in the formation of the Panzhihua Fe-Ti-V ore deposit.
文摘Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.
文摘We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.
基金supported by the Class Ⅲ Peak Discipline of Shanghai,China-Materials Science and Engineering(High-Energy Beam Intelligent Processing and Green Manufacturing).
文摘Laser shock peening(LSP)was used to enhance the high-temperature oxidation resistance of laser melting deposited Ti45Al8Nb alloy.The microstructure and high-temperature oxidation behavior of the as-deposited Ti45Al8Nb alloy before and after LSP were investigated by scanning electron microscopy,X-ray diffraction,and electron backscatter diffraction.The results indicated that the rate of mass gain in the as-deposited sample after LSP exhibited a decrease when exposed to an oxidation temperature of 900℃,implying that LSP-treated samples exhibited superior oxidation resistance at high temperatures.A gradient structure with a fine-grain layer,a deformed-grain layer,and a coarse-grain layer was formed in the LSP-treated sample,which facilitated the diffusion of the Al atom during oxidation,leading to the formation of a dense Al_(2)O_(3)layer on the surface.The mechanism of improvement in the oxidation resistance of the as-deposited Ti45Al8Nb alloy via LSP was discussed.
基金supported by the department of Geoscience,University of Nevada,Las Vegas,NV 89154,USAfinanced by the French Government Laboratory of Excellence Initiative(No.ANR-10-LABX-0006)the Region Auvergne and the European Regional Development Fund。
文摘The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.
基金supported by Guangdong Major Project of Basic and Applied Basic Research,China(No.2019B030302010)the Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region,China and National Natural Science Foundation of China(Nos.N_PolyU523/20 and 52061160483)+4 种基金the National Natural Science Foundation of China(Nos.52104362,52071222,52471179,52471180 and 52001221)the National Key R&D Program of China(No.2022YFA1603800)the National Key Research and Development Program of China(No.2021YFA0716302)Guangdong Provincial Quantum Science Strategic Initiative(No.GDZX2301001)Guangdong Basic and Applied Basic Research,China(No.2020B1515130007).
文摘To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 52074036 and 52404313)the Beijing Institute of Technology Teli Young Fellow Program。
文摘Spinel lithium manganese oxide(LiMn_(2)O_(4), LMO) emerges as a promising cathode material for future stationary energy storage applications due to its high voltage, safety, cost-effectiveness, and electrochemical performance. However,LMO suffers from rapid capacity degradation caused by the Jahn–Teller effect, Mn dissolution and side reactions. The mechanism remains unclear and even contradictory across various studies, impeding the advancement of high-performance LMO and its widespread utilization. In this study, 14 Ah commercial-level LMO batteries were manufactured and assessed.The mechanism of capacity attenuation in cycle-aged cells at room temperature(RT, 25℃) and high temperature(HT,55℃) storage cells was systematically investigated through the application of electrochemical quantitative methods. The results indicate specific capacity losses of approximately 6.26% and 2.55% for the cathodes in RT cycle-aged cells and HT storage cells, respectively, in comparison to fresh cells. These values are lower than the 12.54% and 6.99% capacity losses observed in RT cycle-aged cells and HT storage cells. While RT cycle-aging and HT storage conditions do not lead to irreversible capacity loss on the anode side. The results suggest that the primary causes of irreversible capacity degradation are not located on the cathode or anode. Nevertheless, significant polarization arises from the continuous growth of the solid electrolyte interphase(SEI), believed to be catalyzed by Mn deposited on the anode, which is considered harmful.This study elucidates that inhibiting the dissolution of Mn from the cathode, facilitating its transport in the electrolyte,promoting its deposition on the anode, and catalyzing the decomposition of the electrolyte are crucial factors for enhancing the performance of LMO batteries.
基金supported by the Research Grant Council of Hong Kong(HKU707012P)to MFZfrom a Chinese National "973" project (2011CB808903)+1 种基金a "CAS Hundred Talents" project under Chinese Academy of Sciences to CYWSouth African National Science Foundation Grant SA/China Project 67220 to SP and MFZ
文摘Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.
基金supported by grants from the National Natural Science Foundation of China (Nos. 41902077, 41730423 and 41921003)China Postdoctoral Science Foundation Grant (No. 2019M653103)Science and Technology Planning of Guangdong Province, China (2020B1212060055)。
文摘Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny.
基金Funded by the National Natural Science Foundation of China(Nos.21561016,21661015)Jiangxi Provincial Science&Technology Program(Nos.20133BBE50010,20142BDH80020,and 20161BBE50052)Science&Technology Program of Jiangxi Provincial Education Bureau(No.GJJ150775)
文摘The capacity fade of spinel lithium manganese oxide in lithium-ion batteries is a bottleneck challenge for the large-scale application.The traditional opinion is that Mn(Ⅱ) ions in the anode are reduced to the metallic manganese that helps for catalyzing electrolyte decomposition.This could poison and damage the solid electrolyte interface(SEI) film,leading to the the capacity fade in Li-ion batteries.We propose a new mechanism that Mn(Ⅱ) deposites at the anode hinders and/or blocks the intercalation/de-intercalation of lithium ions,which leads to the capacity fade in Li-ion batteries.Based on the new mechanism assumption,a kind of new structure with core-shell characteristic is designed to inhabit manganese ion dissolution,thus improving electrochemical cycle performance of the cell.By the way,this mechanism hypothesis is also supported by the results of these experiments.The LiMn2-xTixO4 shell layer enhances cathode resistance to corrosion attack and effectively suppresses dissolution of Mn,then improves battery cycle performance with LiMn_2O_4 cathode,even at high rate and elevated temperature.
基金funding through South African National Science Foundation(NRF)Grant SA/China Project 67220 to SP and Mei-Fu ZhouGH also acknowledges the support of a doctoral fellowship from the NRF for 2011-2012
文摘Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(&gt;1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.
基金funded by Nippon Sheet Glass Corp.the Hitachi Foundation+4 种基金the Malaysia-Japan International Institute of TechnologyUniversiti Teknologi Malaysiathe Malaysian Ministry of ScienceTechnology and Innovationthe Malaysian Ministry of Education through various research Grants
文摘The effects of the supporting reagents hexamethylenetetramine(HMTA)and potassium chloride(KCl)mixed in zinc nitrate hexahydrate(Zn(NO3)2 6H2O)on the morphological,structural,and optical properties of the resulting Zn O nanostructures electrodeposited on graphene/glass substrates were investigated.The supporting reagent HMTA does not increase the density of nanorods,but it does remarkably improve the smoothness of the top edge surfaces and the hexagonal shape of the nanorods even at a low temperature of 75°C.Hydroxyl(OH-)ions from the HMTA suppress the sidewall growth of non-polar planes and promote the growth of Zn O on the polar plane to produce vertically aligned nanorods along the c axis.By contrast,the highly electronegative chlorine(Cl-)ions from the supporting reagent KCl suppress the growth of Zn O on the polar plane and promote the growth on non-polar planes to produce vertical stacking nanowall structures.HMTA was found to be able to significantly improve the crystallinity of the grown Zn O structures,as indicated by the observation of much lower FWHM values and a higher intensity ratio of the emission in the UV region to the emission in the visible region.Equimolar mixtures of Zn(NO3)2 6H2O and the supporting reagents HMTA and KCl seem to provide the optimum ratio of concentrations for the growth of high-density,uniform Zn O nanostructures.The corresponding transmittances for such molar ranges are approximately 55–58%(HMTA)and 63–70%(KCl),which are acceptable for solar cell and optoelectronic devices.
文摘One of the Iranian copper deposits that is located east of Iran and also known as a primeval one in that area is Mesgaran Field. Old mining works have been clearly seen in the area. Iran is located on global copper belt and as a result it has numerous potential areas as copper deposits. The purpose of this study is identifying possible potentialities of copper mining in less developed regions of Iran with basic modern technologies. In this study, laboratory investigations of this field were done on samples via leaching and the cementation method. According to the study purposes, acid concentration, temperature, time and pulp density were selected as the main factors that were tested in leaching studies. Moreover, pH, temperature, time and the amount of iron powder were factors which were tested for copper cementation. Optimum conditions of leaching studies with 99.11% recovery rate were obtained after 120 grams per liter of H2SO4, 80 degrees Celsius, 2 hours and 100 grams per liter of solid to liquid. On the other hand, optimum conditions of cementation by iron powder were resulted at more than 95% with a pH of 3, 45 degrees Celsius, 1 hour and 1.5 times more than the stoichiometric equation of required iron powder amount to precipitate copper.
基金financially supported by the National Natural Science Foundation of China(41372102)Chinese Geological Survey Project(DD20160071)
文摘The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.
文摘A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicarbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms,independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.
基金supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2020M3H4A3081867)the industry technology R&D program (20006400) funded by the Ministry of Trade,Industry and Energy (MOTIE, Korea)+2 种基金the project number 20010402 funded by the Ministry of Trade,Industry and Energy (MOTIE, Korea)the Industry Technology R&D program (#20010371) funded by the Ministry of Trade,Industry and Energy (MOTIE, Republic of Korea)the Technology Innovation Program (20017382) funded By the Ministryof Trade,Industry and Energy (MOTIE, Korea)
文摘Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors.
基金supported by funds from the National Key Research and Development Program of China (No.2016YFC0600204)the National Natural Science Foundation of China (Nos.41530211 and41872061)+1 种基金the National Key Basic Research Program of China (No.2015CB856101)the MOST Special Fund from the State Key Laboratory of GPMR (No.MSFGPMR02-2)
文摘A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of Fe-Ti-V oxide ore deposits.Our experimental results demonstrate that the sandwich-and trellis-type ilmenite lamellae in titanomagnetite of layered intrusions can be formed by the reaction of earlier crystallized ilmenite and the evolved parental magma.During evolution of parental basaltic magma,the Fe-Ti oxide should be composed of titanomagnetite+ilmenite in the earlier stage,but changed to titanomagnetite+titanomagnetite-ilmenite intergrowth±ilmenite at the later stage.Accordingly,the Panzhihua Fe-Ti oxide ores,which are mainly composed of titanomagnetite,should be formed earlier than the adjacent gabbro,in which titanomagnetite-ilmenite intergrowth is the major form of the Fe-Ti oxide.
基金partially supported by the Scientific Research (No. 16K06268)the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan
文摘Gallium oxide was deposited on a c-plane sapphire substrate by oxygen plasma-assisted pulsed laser deposition(PLD).An oxygen radical was generated by an inductive coupled plasma source and the effect of radio frequency(RF)power on growth rate was investigated.A film grown with plasma assistance showed 2.7 times faster growth rate.X-ray diffraction and Raman spectroscopy analysis showedβ-Ga2 O3 films grown with plasma assistance at 500℃.The roughness of the films decreased when the RF power of plasma treatment increased.Transmittance of these films was at least 80%and showed sharp absorption edge at 250 nm which was consistent with data previously reported.
基金supported by Key Project of Natural Science Research of Anhui Universities(No.KJ2020A0341).
文摘Objective:Diabetic nephropathy(DN)is a deleterious microangiopathy of diabetes,constituting a critical determinant of fatality in diabetic patients.This work is purposed to disclose the effects and modulatory mechanism of BTG anti-proliferation factor 2(BTG2)during the pathological process of DN.Methods:BTG2 expression in kidney tissues of diabetic mice and high glucose(HG)-exposed human proximal tubular cell line HK-2 was assessed with Western blot and RT-qPCR.The diabetic mice model was constructed by streptozotocin injection and confirmed by the blood glucose level beyond 16.7 mmol/L.Hematoxylin and eosin(H&E)staining and measurement of kidney function hallmarks were conducted to assess kidney injury.Cell counting kit(CCK)-8 method and TUNEL assay appraised cell activity and apoptosis.Oil red O staining assayed lipid accumulation.Relevant commercial kits were used to estimate oxidative stress-related factors.Co-immunoprecipitation(Co-IP)assay testified the binding relationship of BTG2 with protein arginine methyltransferase 1(PRMT1).Results:BTG2 expression was significantly raised in renal tissues of diabetic mice and HK-2 cells exposed to HG.BTG2 deficiency improved viability and extenuated the apoptosis,lipid deposition as well as oxidative stress in HK-2 cells following HG exposure.In addition,PRMT1 was also overexpressed in HK-2 cells exposed to HG.BTG2 interacted with PRMT1 and positively modulated PRMT1 expression.The effects of BTG2 interference on viability,apoptosis,lipid deposition,and oxidative stress in HG-challenged HK-2 cells were partially abrogated by PRMT1 overexpression.Conclusion:Altogether,BTG2 might aggravate HK-2 cell injury in response to HG by binding with PRMT1,providing a novel target for the therapeutic strategy of DN.