The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is ...The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.展开更多
Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at F...Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(>1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.展开更多
Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a rel...Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny.展开更多
The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report...The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.展开更多
A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of F...A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of Fe-Ti-V oxide ore deposits.Our experimental results demonstrate that the sandwich-and trellis-type ilmenite lamellae in titanomagnetite of layered intrusions can be formed by the reaction of earlier crystallized ilmenite and the evolved parental magma.During evolution of parental basaltic magma,the Fe-Ti oxide should be composed of titanomagnetite+ilmenite in the earlier stage,but changed to titanomagnetite+titanomagnetite-ilmenite intergrowth±ilmenite at the later stage.Accordingly,the Panzhihua Fe-Ti oxide ores,which are mainly composed of titanomagnetite,should be formed earlier than the adjacent gabbro,in which titanomagnetite-ilmenite intergrowth is the major form of the Fe-Ti oxide.展开更多
The Panzhihua mafic intrusion,which hosts a world-class Fe-Ti-V ore deposit,is in the western Emeishan region,SW China.The formation age(~260 Ma),and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of...The Panzhihua mafic intrusion,which hosts a world-class Fe-Ti-V ore deposit,is in the western Emeishan region,SW China.The formation age(~260 Ma),and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of the Emeishan large igneous province and has little crustal contamination.To assess ore genesis of the Panzhihua Fe-Ti-V ore deposit,two different models have been provided to explain the formation,namely silicate immiscibility and normal fractional crystallization.Silicate immiscibility occurring around 1,000℃at the late stage of basaltic magma evolution argues against the silicate immiscibility model.Apatite-hosted melt inclusion research indicates that silicate immiscibility occurred at the late stage of Panzhihua magma evolution,which may not have offered potential to form such large ore deposits as Panzhihua.Alternatively,continuous compositional variations of the Panzhihua intrusion and calculations using thermodynamic modelling software support the hypothesis that the Panzhihua deposit was formed by normal fractional crystallization.Reciprocal trace element patterns of the Panzhihua intrusion and nearby felsic rocks also coincide with the fractional crystallization model.Normal fractional crystallization of high-Ti basaltic magma played a key role in the formation of the Panzhihua Fe-Ti-V ore deposit.展开更多
The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and...The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.展开更多
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f...High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro...Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongg...Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.展开更多
Volcanic glass compositions and tephra layer age are critical for anchoring their sources and correlating among different sites; however, such work may be imprecise when the tephra has varied compositions. The ash fro...Volcanic glass compositions and tephra layer age are critical for anchoring their sources and correlating among different sites; however, such work may be imprecise when the tephra has varied compositions. The ash from Changbaishan Millennium eruption(940s AD), a widely distributed tephra layer, has been detected in the far-east areas of Russia, the Korean Peninsula, Japan, and in Greenland ice cores. There are some debates on the presence of this tephra from sedimentary archives to the west of Changbaishan volcano, such as lake and peat sediments in the Longgang volcanic field. In this paper, major element compositions for clinopyroxene and Fe-Ti oxides were performed on proximal tephra from Changbaishan and the Millennium eruption ash record in Lake Sihailongwan. Clinopyroxene and Fe-Ti oxides microlites from Sihailongwan show augite-ferroaugite and titanmagnetite compositions, similar to those from dark pumice in Changbaishan proximal tephra, but different from the light grey pumice, which has ferrohedenbergite and ilmenite microlite compositions. This result implies that the tephra recorded in Sihailongwan was mainly from the trachytic eruptive phase of the Millennium eruption, and the rhyolitic eruptive phase made a relatively small contribution to this area. Analyzing clinopyroxene and Fe-Ti oxides microlites is a new method for correlating tephra layers from Changbaishan Millennium eruption.展开更多
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre...Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.展开更多
A number of Fe-Ti oxide and Fe-Cu sulfide exsolution phases are found in amphibole cumulate xenoliths from Mesozoic granodioritic plutons at Jiguanshi and Jin- kouling in Tongling, Anhui Province. Most of amphiboles i...A number of Fe-Ti oxide and Fe-Cu sulfide exsolution phases are found in amphibole cumulate xenoliths from Mesozoic granodioritic plutons at Jiguanshi and Jin- kouling in Tongling, Anhui Province. Most of amphiboles in the xenoliths have been identified as pargasite, and deter-mined as a crystallization phase in the lower crust. The oxide exsolutions commonly acicular, are distributed parallel to [100] of amphibole with a typical Schiller texture. They con-tain 0.29%—51.07% of TiO2, and correspond to magnetite, titaniferous magnetite, titanomagnetite or ilmenite. All ex-solved sulfide grains, being rounded to extended rounded in shape, are regularly arranged in sub-paralleled or closely beaded groups, except for a few of grains that are scattered or isolated. The exsolved sulfide phases comprise mostly pyrrhotite, secondarily cubanite and chalcopyrite, and rarely pyrite. A few grains of magnetite can coexist with pyrrhotite in most samples. The sulfide phases are poor in nickel (usu-ally Ni < 0.5%, Ni/Fe < 0.003), while relative enrichments in copper (up to 2.93%) typify the pyrrhotite. Additionally, both oxides and sulfides may be exsolved in the same area of amphibole. Occurrence of Fe-Ti oxide and Fe-Cu sulfide exsolution phases in the xenoliths leads to inference that ore-forming materials such as S, Fe, Cu, etc. have been pri-marily dissolved in Mesozoic magma within the lower crust beneath the Tongling area.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-p...Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
基金financially supported by the National Natural Science Foundation of China(No.41372102)the National Basic Research Program of China(No.2014CB440803)the China Geological Survey(No.DD20160071)
文摘The Xiangshan mafic-ultramafic complex is one of the major Early Permian maficultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce^4+/Ce^3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, HEO-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.
基金funding through South African National Science Foundation(NRF)Grant SA/China Project 67220 to SP and Mei-Fu ZhouGH also acknowledges the support of a doctoral fellowship from the NRF for 2011-2012
文摘Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(&gt;1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.
基金supported by grants from the National Natural Science Foundation of China (Nos. 41902077, 41730423 and 41921003)China Postdoctoral Science Foundation Grant (No. 2019M653103)Science and Technology Planning of Guangdong Province, China (2020B1212060055)。
文摘Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny.
基金financially supported by the National Natural Science Foundation of China(41372102)Chinese Geological Survey Project(DD20160071)
文摘The Niumaoquan layered gabbroic intrusion is in the southern margin of the Central Asian Orogenic Belt in North Xinjiang, China, and hosts a Fe-Ti oxide deposit in its evolved gabbroic phases. In this paper, we report zircon U-Pb age, Sr-Nd-Hf isotopes, plagioclase chemistry, and whole-rock geochemistry of the Niumaoquan layered gabbroic intrusion. Zircon grains separated from an anorthosite sample analyzed by laser ablation inductively coupled plasma mass spectrometry yielded a concordia age of 314.7±0.74 Ma, indicating that the Niumaoquan ore-bearing gabbroic intrusion was emplaced during the Late Carboniferous. The olivine gabbro texture and plagioclase chemistry suggest that plagioclase was an early crystallized silicate phase that crystallized prior to olivine. Fractional crystallization and accumulation of plagioclase significantly controlled the evolution of the Niumaoquan gabbroic intrusion and contributed to the formation of anorthosite layers, causing metallogenic elements to become enriched in the residual melt. The Niumaoquan gabbroic intrusion is characterized by the enrichment of large ion lithophile elements and depletion of high field strength elements, positive zircon εHf(t) values(+2.1 to +12.2), positive εNd(t) values(+3.3 to +5.2), and low initial ^(87)Sr/^(86)Sr ratios(0.7039 to 0.7047), suggesting that the parental magma was produced by interactions between metasomatized lithospheric mantle and depleted asthenospheric melts at an early post-collision stage. The Fe-Ti oxide mineralization of the Niumaoquan intrusion benefited from interactions between depleted asthenospheric melts and lithospheric mantle, and fractional crystallization of abundant plagioclase and magnesian minerals.
基金supported by funds from the National Key Research and Development Program of China (No.2016YFC0600204)the National Natural Science Foundation of China (Nos.41530211 and41872061)+1 种基金the National Key Basic Research Program of China (No.2015CB856101)the MOST Special Fund from the State Key Laboratory of GPMR (No.MSFGPMR02-2)
文摘A series of crystallization experiments have been carried out by using natural Emeishan Ti-rich hydrous basalts as starting materials at a pressure of 0.5 GPa and temperatures of 800-1000℃to constrain the origin of Fe-Ti-V oxide ore deposits.Our experimental results demonstrate that the sandwich-and trellis-type ilmenite lamellae in titanomagnetite of layered intrusions can be formed by the reaction of earlier crystallized ilmenite and the evolved parental magma.During evolution of parental basaltic magma,the Fe-Ti oxide should be composed of titanomagnetite+ilmenite in the earlier stage,but changed to titanomagnetite+titanomagnetite-ilmenite intergrowth±ilmenite at the later stage.Accordingly,the Panzhihua Fe-Ti oxide ores,which are mainly composed of titanomagnetite,should be formed earlier than the adjacent gabbro,in which titanomagnetite-ilmenite intergrowth is the major form of the Fe-Ti oxide.
基金co-supported by the China Geological Survey(Grant Nos.DD20230229,DD20190011,DD20221643)the National Key Research and Development Project of China(Grant No.2018YFC0603701)。
文摘The Panzhihua mafic intrusion,which hosts a world-class Fe-Ti-V ore deposit,is in the western Emeishan region,SW China.The formation age(~260 Ma),and Sr and Nd isotopes indicate that the Panzhihua intrusion is part of the Emeishan large igneous province and has little crustal contamination.To assess ore genesis of the Panzhihua Fe-Ti-V ore deposit,two different models have been provided to explain the formation,namely silicate immiscibility and normal fractional crystallization.Silicate immiscibility occurring around 1,000℃at the late stage of basaltic magma evolution argues against the silicate immiscibility model.Apatite-hosted melt inclusion research indicates that silicate immiscibility occurred at the late stage of Panzhihua magma evolution,which may not have offered potential to form such large ore deposits as Panzhihua.Alternatively,continuous compositional variations of the Panzhihua intrusion and calculations using thermodynamic modelling software support the hypothesis that the Panzhihua deposit was formed by normal fractional crystallization.Reciprocal trace element patterns of the Panzhihua intrusion and nearby felsic rocks also coincide with the fractional crystallization model.Normal fractional crystallization of high-Ti basaltic magma played a key role in the formation of the Panzhihua Fe-Ti-V ore deposit.
基金supported by the department of Geoscience,University of Nevada,Las Vegas,NV 89154,USAfinanced by the French Government Laboratory of Excellence Initiative(No.ANR-10-LABX-0006)the Region Auvergne and the European Regional Development Fund。
文摘The mafic-ultramafic intrusion in the XV anomaly area,contains magmatic Fe-Ti oxides±(p)ore,is located in the Bafq mining district in the Central Iran.It consists of cumulate and layered Fe-Ti-bearing gabbros and pyroxenites.The mineral assemblages include clinopyroxene,Fe-Ti oxides,plagioclase,amphibole,apatite and sulfides(pyrite and chalcopyrite).The Fe-Ti oxides mainly consist of magnetite-titanomagnetite and ilmenite,which occurred as disseminated,intergrowth,lamellae(trellis and sandwich textures)and inclusions.Magnetite in the gabbroic rocks is from the near end-member of Fe_(3)O_(4)(<1 wt.%TiO_(2))to titanomagnetite containing up to 8 wt.%TiO_(2)(about3.73 wt.%to 26.84 wt.%Ulvospinel(X_(Usp))).Magnetite in pyroxenite rocks is characterized with TiO_(2)range from 0.46 wt.%to 3.14 wt.%(X_(Usp)varied from 1.76 wt.%to 10.46 wt.%).The abundances of V_(2)O_(3)range from 0.03 wt.%to 1.29 wt.%and 0.24 wt.%to 1.00 wt.%for gabbro and pyroxenite,respectively.X_(Usp)contents of magnetite show insignificant correlations with Al_(2)O_(3)and MgO.The average XIlmin the ilmenite of gabbro is 92%,whereas it is 90.37%in the pyroxenite rocks.The MgO and V_(2)O_(3)contents show a slightly positive correlation with TiO_(2)in ilmenite.The composition of clinopyroxenes in gabbro and pyroxenite rocks fall in the diopside to augite field with Mg#ranging from 67 to 98 and 74 to 96,respectively.In both rock types,amphiboles are mainly pargasite and rarely actinolite.Plagioclase in pyroxenite rocks is clustered in the labradorite to andesine fields with a compositional ranges of An46-69and in gabboic rocks fall in two fields with compositional ranges of albite with An0.65-5.95and labradorite with An50-63.Theδ34S isotopic values cover a limited range from+3.15‰to+4.10‰V-CDT consistent with magmatic origin.Fe-Ti mineralization is formed in two stages,minor inclusions of Fe-Ti oxide minerals in the pyroxene and plagioclase crystallized in the early magmatic stage,whereas interstitial oxides formed by fractional crystallization processes that accumulated by gravitational settling in the later stage as intercumulus phase.Gravitational settling process is supported by the observation of decreasing the amount of Fe-Ti oxides from Fe-Ti oxide-rich pyroxenite to weak mineralized gabbro(base to top).The high contents of H2O,phosphorate and high initial Ti-Fe in parental magma are the crucial factors controlling the Fe-Ti oxides enrichment and mineralization.
基金financially supported by the National Natural Science Foundation of China(Grant No.12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)。
文摘High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金the financial support from the National Natural Science Foundation of China(52172110,52472231,52311530113)Shanghai"Science and Technology Innovation Action Plan"intergovernmental international science and technology cooperation project(23520710600)+1 种基金Science and Technology Commission of Shanghai Municipality(22DZ1205600)the Central Guidance on Science and Technology Development Fund of Zhejiang Province(2024ZY01011)。
文摘Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
基金supported by the Research Grant Council of Hong Kong(HKU707012P)to MFZfrom a Chinese National "973" project (2011CB808903)+1 种基金a "CAS Hundred Talents" project under Chinese Academy of Sciences to CYWSouth African National Science Foundation Grant SA/China Project 67220 to SP and MFZ
文摘Magmatic oxide deposits in the~260 Ma Emeishan Large Igneous Province(ELIP),SW China and northern Vietnam,are important sources of Fe,Ti and V.Some giant magmatic Fe-Ti-V oxide deposits, such as the Panzhihua,Hongge,and Baima deposits,are well described in the literature and are hosted in layered mafic-ultramafic intrusions in the Panxi region,the central ELIP.The same type of ELIP- related deposits also occur far to the south and include the Anyi deposit,about 130 km south of Panzhihua,and the Mianhuadi deposit in the Red River fault zone.The Anyi deposit is relatively small but is similarly hosted in a layered mafic intrusion.The Mianhuadi deposit has a zircon U-Pb age of~260 Ma and is thus contemporaneous with the ELIP.This deposit was variably metamorphosed during the Indosinian orogeny and Red River faulting.Compositionally,magnetite of the Mianhuadi deposit contains smaller amounts of Ti and V than that of the other deposits,possibly attributable to the later metamorphism.The distribution of the oxide ore deposits is not related to the domal structure of the ELIP.One major feature of all the oxide deposits in the ELIP is the spatial association of oxide-bearing gabbroic intrusions,syenitic plutons and high-Ti flood basalts.Thus,we propose that magmas from a mantle plume were emplaced into a shallow magma chamber where they were evolved into a field of liquid immiscibility to form two silicate liquids,one with an extremely Fe-Ti-rich gabbroic composition and the other syenitic.An immiscible Fe-Ti-(P) oxide melt may then separate from the mafic magmas to form oxide deposits.The parental magmas from which these deposits formed were likely Fe-Ti-rich picritic in composition and were derived from enriched asthenospheric mantle at a greater depth than the magmas that produced sulfide-bearing intrusions of the ELIP.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41472320, 41320104006 and 41272369)
文摘Volcanic glass compositions and tephra layer age are critical for anchoring their sources and correlating among different sites; however, such work may be imprecise when the tephra has varied compositions. The ash from Changbaishan Millennium eruption(940s AD), a widely distributed tephra layer, has been detected in the far-east areas of Russia, the Korean Peninsula, Japan, and in Greenland ice cores. There are some debates on the presence of this tephra from sedimentary archives to the west of Changbaishan volcano, such as lake and peat sediments in the Longgang volcanic field. In this paper, major element compositions for clinopyroxene and Fe-Ti oxides were performed on proximal tephra from Changbaishan and the Millennium eruption ash record in Lake Sihailongwan. Clinopyroxene and Fe-Ti oxides microlites from Sihailongwan show augite-ferroaugite and titanmagnetite compositions, similar to those from dark pumice in Changbaishan proximal tephra, but different from the light grey pumice, which has ferrohedenbergite and ilmenite microlite compositions. This result implies that the tephra recorded in Sihailongwan was mainly from the trachytic eruptive phase of the Millennium eruption, and the rhyolitic eruptive phase made a relatively small contribution to this area. Analyzing clinopyroxene and Fe-Ti oxides microlites is a new method for correlating tephra layers from Changbaishan Millennium eruption.
文摘Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
基金supported by the National Natural Science Foundation of China (Grant Nos.40272034 and 40133020)Chinese Ministry of Science and Technology(Grant No.G1999043206)Korea Science and Engineering Foundation (Grant No.KOSEF-20005-131-03-02).
文摘A number of Fe-Ti oxide and Fe-Cu sulfide exsolution phases are found in amphibole cumulate xenoliths from Mesozoic granodioritic plutons at Jiguanshi and Jin- kouling in Tongling, Anhui Province. Most of amphiboles in the xenoliths have been identified as pargasite, and deter-mined as a crystallization phase in the lower crust. The oxide exsolutions commonly acicular, are distributed parallel to [100] of amphibole with a typical Schiller texture. They con-tain 0.29%—51.07% of TiO2, and correspond to magnetite, titaniferous magnetite, titanomagnetite or ilmenite. All ex-solved sulfide grains, being rounded to extended rounded in shape, are regularly arranged in sub-paralleled or closely beaded groups, except for a few of grains that are scattered or isolated. The exsolved sulfide phases comprise mostly pyrrhotite, secondarily cubanite and chalcopyrite, and rarely pyrite. A few grains of magnetite can coexist with pyrrhotite in most samples. The sulfide phases are poor in nickel (usu-ally Ni < 0.5%, Ni/Fe < 0.003), while relative enrichments in copper (up to 2.93%) typify the pyrrhotite. Additionally, both oxides and sulfides may be exsolved in the same area of amphibole. Occurrence of Fe-Ti oxide and Fe-Cu sulfide exsolution phases in the xenoliths leads to inference that ore-forming materials such as S, Fe, Cu, etc. have been pri-marily dissolved in Mesozoic magma within the lower crust beneath the Tongling area.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
基金supported by National Key R&D Program of China(2021YFB4001401)National Natural Science Foundation of China(52272190,22178023).
文摘Solid oxide electrolysis cells(SOECs)can effectively convert CO_(2)into high value-added CO fuel.In this paper,Sc-doped Sr_(2)Fe_(1.5)Mo_(0.3)Sc_(0.2)O_(6−δ)(SFMSc)perovskite oxide material is synthesized via solid-phase method as the cathode for CO_(2)electrolysis by SOECs.XRD confirms that SFMSc exhibits a stable cubic phase crystal structure.The experimental results of TPD,TG,EPR,CO_(2)-TPD further demonstrate that Sc-doping increases the concentration of oxygen vacancy in the material and the chemical adsorption capacity of CO_(2)molecules.Electrochemical tests reveal that SFMSc single cell achieves a current density of 2.26 A/cm^(2) and a lower polarization impedance of 0.32Ω·cm^(2) at 800°C under the applied voltage of 1.8 V.And no significant performance attenuation or carbon deposition is observed after 80 h continuous long-term stability test.This study provides a favorable support for the development of SOEC cathode materials with good electro-catalytic performance and stability.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.