The isothermal sections of Al-Fe-Sn ternary system at 973 and 593 K were determined experimentally by the equilibriated alloy method using scanning electron microscopy coupled with energy-dispersive spectrometry and X...The isothermal sections of Al-Fe-Sn ternary system at 973 and 593 K were determined experimentally by the equilibriated alloy method using scanning electron microscopy coupled with energy-dispersive spectrometry and X-ray diffractometry. Experimental results show that no ternary compound is found on these two sections. The maximum solubility of Fe in the liquid phase is 1.6%(mole fraction) at 973 K and those of Fe and Al in the liquid phase are 0.6% and 5.1%(mole fraction) at 593 K, respectively. The maximum solubility of Sn in the Fe-Al compounds is 4.2%(mole fraction) at 973 K and 2.3%(mole fraction) at 593 K. All the Fe-Al compounds can be in equilibrium with the liquid phase.展开更多
Nanocrystalline supersaturated solid solutions (Sa in Fe) with Sn content less than 50 at. %,and FeSn2 and Fe1.3Sn intermetallic compounds have been prepared by mechanical alloying of Fe and Sn mixture powders with co...Nanocrystalline supersaturated solid solutions (Sa in Fe) with Sn content less than 50 at. %,and FeSn2 and Fe1.3Sn intermetallic compounds have been prepared by mechanical alloying of Fe and Sn mixture powders with composition of Fe1-xSnx (x≤0.5).The atomic alloying the formation and microstructure, especially the coordination environments, of the resultant alloys have been studied by X-ray diffraction, 57Fe and 119Sn Mossbauer Spectroscopy and diffrrential scanning calorimetry. The Fe and Sn coordination environments and the composition dependence of the hyperfine parameters on the Fe and Sn content have been fully discussed with respect to the solid dissolution alloying, grain refinement, and distortion caused or induced by mechanical alloying.展开更多
Two kinds of inclusions, fluid-melting inclusion and gas-liquid inclusion, are present in the Huanggangliang deposit in eastern Inner Mongolia. Temperature ranges from 1050°C of fluid-melting inclusion to 150...Two kinds of inclusions, fluid-melting inclusion and gas-liquid inclusion, are present in the Huanggangliang deposit in eastern Inner Mongolia. Temperature ranges from 1050°C of fluid-melting inclusion to 150°C of liquid inclusion. Away from intrusion, the inclusions of orebodies intend to be characterized by simpler type, lower temperature and lower salinity, as well as weakened relation to intrusion. The metallization of the Huanggangliang deposit is characterized by multiple activities of ore-forming fluid, multi-source, multi-stage accumulation of ore-forming material, F-rich environment, enrichment of F, organic gas, CO2 and N2, and involving of residual magma.展开更多
Zirconium alloy cladding materials inevitably undergo hydrogen absorption in the processing and operation process of the reactor,and its static and dynamic mechanical properties are closely related to the hydrogen con...Zirconium alloy cladding materials inevitably undergo hydrogen absorption in the processing and operation process of the reactor,and its static and dynamic mechanical properties are closely related to the hydrogen content.Samples with hydrogen content ranging from 23μg/g to 132μg/g were obtained using the method of gas-phase hydrogen charging,and the influence of hydrogen content on static/dynamic mechanical properties of Zr-Sn-Nb-Fe alloy was studied.The results show that the effect of weak hydrogen charging on the ultimate tensile strength,yield strength,and elongation of zirconium alloy is not obvious.There are a large number of dimples on the fracture surface of the tensile sample before and after hydrogen charging,which is a typical ductile fracture.However,the impact toughness of Zr-Sn-Nb-Fe alloy decreases significantly after trace hydrogen charging.The impact sample without hydrogen charging shows the mixed fracture mechanism of ductile fracture and microcleavage fracture.The increase in hydrogen permeability leads to the emergence of hydride,and the deformation of high strain rate under the impact loading condition leads to secondary cracks in the microstructure.The initiation and expansion of the secondary cracks is the main reason for the reduction of the impact toughness.展开更多
在分子氧-苯甲醛体系,由共沉淀法制备的Fe-Sn-O复合氧化物作为催化剂,催化分子氧化环己酮合成ε-己内酯,通过单因素实验,得到适宜的合成条件:常温常压下,以环己酮用量为5 mmol计;n(苯甲醛)∶n(环己酮)=3∶1;1,2-二氯乙烷20 m L;氧气流速...在分子氧-苯甲醛体系,由共沉淀法制备的Fe-Sn-O复合氧化物作为催化剂,催化分子氧化环己酮合成ε-己内酯,通过单因素实验,得到适宜的合成条件:常温常压下,以环己酮用量为5 mmol计;n(苯甲醛)∶n(环己酮)=3∶1;1,2-二氯乙烷20 m L;氧气流速20 m L/min;反应时间4 h;反应温度55°C.该条件下,ε-己内酯收率达到98.8%,选择性达到99.0%;采用SEM、XRD等对催化剂的结构进行表征;催化剂重复使用5次仍保持较高活性.展开更多
基金Projects(51471141,51471140)supported by the National Natural Science Foundation of ChinaProject(2016JC2005)supported by the Scientific Research Fund of Hunan Provincial Science and Technology Department,China
文摘The isothermal sections of Al-Fe-Sn ternary system at 973 and 593 K were determined experimentally by the equilibriated alloy method using scanning electron microscopy coupled with energy-dispersive spectrometry and X-ray diffractometry. Experimental results show that no ternary compound is found on these two sections. The maximum solubility of Fe in the liquid phase is 1.6%(mole fraction) at 973 K and those of Fe and Al in the liquid phase are 0.6% and 5.1%(mole fraction) at 593 K, respectively. The maximum solubility of Sn in the Fe-Al compounds is 4.2%(mole fraction) at 973 K and 2.3%(mole fraction) at 593 K. All the Fe-Al compounds can be in equilibrium with the liquid phase.
文摘Nanocrystalline supersaturated solid solutions (Sa in Fe) with Sn content less than 50 at. %,and FeSn2 and Fe1.3Sn intermetallic compounds have been prepared by mechanical alloying of Fe and Sn mixture powders with composition of Fe1-xSnx (x≤0.5).The atomic alloying the formation and microstructure, especially the coordination environments, of the resultant alloys have been studied by X-ray diffraction, 57Fe and 119Sn Mossbauer Spectroscopy and diffrrential scanning calorimetry. The Fe and Sn coordination environments and the composition dependence of the hyperfine parameters on the Fe and Sn content have been fully discussed with respect to the solid dissolution alloying, grain refinement, and distortion caused or induced by mechanical alloying.
基金Resources and Ecologic Environment Project (Grant No. ZK951-B1-404) and Intellectual Renovation (Grant No. KZCX1-07) of CAS.
文摘Two kinds of inclusions, fluid-melting inclusion and gas-liquid inclusion, are present in the Huanggangliang deposit in eastern Inner Mongolia. Temperature ranges from 1050°C of fluid-melting inclusion to 150°C of liquid inclusion. Away from intrusion, the inclusions of orebodies intend to be characterized by simpler type, lower temperature and lower salinity, as well as weakened relation to intrusion. The metallization of the Huanggangliang deposit is characterized by multiple activities of ore-forming fluid, multi-source, multi-stage accumulation of ore-forming material, F-rich environment, enrichment of F, organic gas, CO2 and N2, and involving of residual magma.
文摘Zirconium alloy cladding materials inevitably undergo hydrogen absorption in the processing and operation process of the reactor,and its static and dynamic mechanical properties are closely related to the hydrogen content.Samples with hydrogen content ranging from 23μg/g to 132μg/g were obtained using the method of gas-phase hydrogen charging,and the influence of hydrogen content on static/dynamic mechanical properties of Zr-Sn-Nb-Fe alloy was studied.The results show that the effect of weak hydrogen charging on the ultimate tensile strength,yield strength,and elongation of zirconium alloy is not obvious.There are a large number of dimples on the fracture surface of the tensile sample before and after hydrogen charging,which is a typical ductile fracture.However,the impact toughness of Zr-Sn-Nb-Fe alloy decreases significantly after trace hydrogen charging.The impact sample without hydrogen charging shows the mixed fracture mechanism of ductile fracture and microcleavage fracture.The increase in hydrogen permeability leads to the emergence of hydride,and the deformation of high strain rate under the impact loading condition leads to secondary cracks in the microstructure.The initiation and expansion of the secondary cracks is the main reason for the reduction of the impact toughness.
文摘在分子氧-苯甲醛体系,由共沉淀法制备的Fe-Sn-O复合氧化物作为催化剂,催化分子氧化环己酮合成ε-己内酯,通过单因素实验,得到适宜的合成条件:常温常压下,以环己酮用量为5 mmol计;n(苯甲醛)∶n(环己酮)=3∶1;1,2-二氯乙烷20 m L;氧气流速20 m L/min;反应时间4 h;反应温度55°C.该条件下,ε-己内酯收率达到98.8%,选择性达到99.0%;采用SEM、XRD等对催化剂的结构进行表征;催化剂重复使用5次仍保持较高活性.