Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ...Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.展开更多
Furniture is identified as a vital volatile organic compound(VOC)emission source in the indoor environment.Leather has become the most common raw and auxiliary fabric material for upholstered furniture,particularly wi...Furniture is identified as a vital volatile organic compound(VOC)emission source in the indoor environment.Leather has become the most common raw and auxiliary fabric material for upholstered furniture,particularly with extensive consumption in sofas,due to its abundant resources and efficient functions.Despite being widely traded across the world,little research has been conducted on the VOCs released by leathermaterials and their health risk assessment in the indoor environment.Accordingly,this study investigated the VOC emissions of leather with different grades and the health risk of the inhalation exposure.Based on the ultra-fast gas phase electronic nose(EN)and GC-FID/Qtof,the substantial emissions of aliphatic aldehyde ketones(Aks),particularly hexanal,appear to be the cause of off-flavor in medium and low grade(MG and LG)sofa leathers.The health risk assessment indicated that leather materials barely pose non-carcinogenic and carcinogenic effects to residents.Given the abundance of VOC sources and the accumulation of health risks in the indoor environment,more stringent specifications concerning qualitative and quantitative content should be extended to provide VOC treatment basic for the manufacturing industry and obtain better indoor air quality.展开更多
VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effe...VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.展开更多
Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at dif...Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.展开更多
Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 ...Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.展开更多
Anti-aging research has become a popular scientific field with the increasing prominence of population aging.Rare ginsenoside Compound K(CK)has attracted widespread attention as an emerging anti-aging active ingredien...Anti-aging research has become a popular scientific field with the increasing prominence of population aging.Rare ginsenoside Compound K(CK)has attracted widespread attention as an emerging anti-aging active ingredient.The anti-aging effect of ginsenosides is considered to be one of the important roles of ginsenosides,and Compound K,as the main deglycosylated metabolite of ginsenosides,has a comprehensive anti-aging effect as a highly active ingredient obtained by transformation under the action of microbiota.Recent studies have shown that ginsenosides have anti-photo-oxidation,anti-skin aging,free radical scavenging and immunostimulatory effects,which can effectively prevent skin photoaging.With the progress of modern natural medicine extraction technology and the deepening of the research on the anti-skin aging of ginsenosides'high active ingredients,it will promote the development and application of natural product protective skin photoaging preparations.The rare ginsenoside Compound K plays an important role in the improvement of skin health and anti-aging,which is mainly realized by increasing the activity of antioxidant enzymes,inducing the expression of related genes,reducing the content of oxidative damage substances,regulating the immune system,and influencing the expression of cell-cycle regulators and aging genes.A more comprehensive and in-depth study of the molecular mechanism of the anti-aging effect of rare ginsenoside Compound K will be one of the focuses of future research.展开更多
The current study aimed to evaluate the efficacy and safety of Compound Danshen Dripping Pills(CDDP)in improving cardiac function in patients with acute anterior ST-segment elevation myocardial infarction(AAMI).Betwee...The current study aimed to evaluate the efficacy and safety of Compound Danshen Dripping Pills(CDDP)in improving cardiac function in patients with acute anterior ST-segment elevation myocardial infarction(AAMI).Between February 2021 and February 2023,247 eligible patients with AAMI after primary percutaneous coronary intervention were enrolled and randomly assigned(1∶1)to receive CDDP(n=126)or placebo(n=121),with a follow-up of 48 weeks.Compared with the placebo group,the CDDP group demonstrated a significant increase in left ventricular ejection fraction values after 24 weeks of treatment(least squares mean:3.31;95%confidence interval[CI]:1.72–4.90;P<0.001)and at the 48-week follow-up(least squares mean:4.35;95%CI:2.76–5.94;P<0.001).Significant reductions in N-terminal pro-B-type natriuretic peptide levels were observed in both groups at the 24-and 48-week visits with no significant difference between the two groups(P>0.1 for all).The incidence of major adverse cardiovascular and cerebrovascular events was 6.35%in the CDDP group and 5.79%in the placebo group(P=0.822).Notably,no serious adverse events were attributed to CDDP.These findings suggest that CDDP may be well tolerated and could improve left ventricular ejection fraction in patients with AAMI at 24 and 48 weeks.展开更多
基金supported by Hong Kong Environment Protection Department(Quotation Ref.18-06532)Hong Kong Innovation and Technology Fund(ITS/193/20FP)Hong Kong Research Grants Council(No.26304921).
文摘Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
基金supported by the National Key Research and Development Program of China (No.2019YFC1904501).
文摘Furniture is identified as a vital volatile organic compound(VOC)emission source in the indoor environment.Leather has become the most common raw and auxiliary fabric material for upholstered furniture,particularly with extensive consumption in sofas,due to its abundant resources and efficient functions.Despite being widely traded across the world,little research has been conducted on the VOCs released by leathermaterials and their health risk assessment in the indoor environment.Accordingly,this study investigated the VOC emissions of leather with different grades and the health risk of the inhalation exposure.Based on the ultra-fast gas phase electronic nose(EN)and GC-FID/Qtof,the substantial emissions of aliphatic aldehyde ketones(Aks),particularly hexanal,appear to be the cause of off-flavor in medium and low grade(MG and LG)sofa leathers.The health risk assessment indicated that leather materials barely pose non-carcinogenic and carcinogenic effects to residents.Given the abundance of VOC sources and the accumulation of health risks in the indoor environment,more stringent specifications concerning qualitative and quantitative content should be extended to provide VOC treatment basic for the manufacturing industry and obtain better indoor air quality.
基金supported by the Natural Science Foundation of Hebei Province(Nos.D2019106042,D2020304038,and D2021106002)the National Natural Science Foundation of China(No.22276099)+1 种基金the State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex(No.2021080544)the Environmental Monitoring Research Foundation of Jiangsu Province(No.2211).
文摘VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.
基金financially supported by the National Natural Science Foundation of China(No.52105373)the China Scholarship Council(No.202106020094).
文摘Ti-10V-2Fe-3Al alloy with fine-grainedβphases was fabricated by friction stir processing with opti-mized processing parameters.The superplastic behavior of the specimens was investigated by tensile deformation at different strain rates and temperatures,and an optimal superplastic elongation of 634%was achieved at 700℃ and 3×10^(-4)/s.An annealing treatment at 650℃ for 60 min showed a mi-crostructure withαprecipitates distributed in theβmatrix in the friction stir specimen.Such pre-heat treatment improves the superplasticity of the specimen,achieving an elongation of up to 807%at 750℃ and 3×10^(-4)/s.The influences of tensile temperatures and strain rates on the microstructural evolution,such as grain size variation,grain morphology,and phase transformations,were discussed.The super-plastic deformation behavior of fine-grained Ti-10V-2Fe-3Al alloy is controlled by grain boundary sliding and accompanied by dynamic phase transformation and recrystallization.
基金supported by the Medical and Health Projects in Zhejiang Province(No.2022PY049)the Basic Scientific Research Project of Hangzhou Medical College(No.YS2021006)Key Discipline of Zhejiang Province in Public Health and Preventive Medicine(First Class,Category A),Hangzhou Medical College.
文摘Ubiquitous contamination of the soil environment with volatile organic compounds(VOCs)has raised considerable concerns.However,there is still limited comprehensive surveying of soil VOCs on a national scale.Herein,65 species of VOCswere simultaneously determined in surface soil samples collected from 63 chemical industrial parks(CIPs)across China.The results showed that the total VOC concentrations ranged from 7.15 to 1842 ng/g with a mean concentration of 326 ng/g(median:179 ng/g).Benzene homologs and halogenated hydrocarbons were identified as the dominant contaminant groups.Positive correlations between many VOC species indicated that these compounds probably originated from similar sources.Spatially,the hotspots of VOC pollution were located in eastern and southern China.Soils with higher clay content and a higher fraction of total organic carbon(TOC)content were significantly associated with higher soil VOC concentrations.Precipitation reduces the levels of highly water-soluble substances in surface soils.Both positive matrix factorization(PMF)and principal component analysis-multiple linear regression(PCA-MLR)identified a high proportion of industrial sources(PMF:59.2%and PCA-MLR:66.5%)and traffic emission sources(PMF:32.3%and PCA-MLR:33.5%).PMF,which had a higher R^(2) value(0.7892)than PCA-MLR(0.7683),was the preferred model for quantitative source analysis of soil VOCs.The health risk assessment indicated that the non-carcinogenic and carcinogenic risks of VOCs were at acceptable levels.Overall,this study provides valuable data on the occurrence of VOCs in soil from Chinese CIPs,which is essential for a comprehensive understanding of their environmental behavior.
文摘Anti-aging research has become a popular scientific field with the increasing prominence of population aging.Rare ginsenoside Compound K(CK)has attracted widespread attention as an emerging anti-aging active ingredient.The anti-aging effect of ginsenosides is considered to be one of the important roles of ginsenosides,and Compound K,as the main deglycosylated metabolite of ginsenosides,has a comprehensive anti-aging effect as a highly active ingredient obtained by transformation under the action of microbiota.Recent studies have shown that ginsenosides have anti-photo-oxidation,anti-skin aging,free radical scavenging and immunostimulatory effects,which can effectively prevent skin photoaging.With the progress of modern natural medicine extraction technology and the deepening of the research on the anti-skin aging of ginsenosides'high active ingredients,it will promote the development and application of natural product protective skin photoaging preparations.The rare ginsenoside Compound K plays an important role in the improvement of skin health and anti-aging,which is mainly realized by increasing the activity of antioxidant enzymes,inducing the expression of related genes,reducing the content of oxidative damage substances,regulating the immune system,and influencing the expression of cell-cycle regulators and aging genes.A more comprehensive and in-depth study of the molecular mechanism of the anti-aging effect of rare ginsenoside Compound K will be one of the focuses of future research.
基金supported by Tasly Pharmaceutical Group Co.,Ltd.(Grant No.303100031BA20)。
文摘The current study aimed to evaluate the efficacy and safety of Compound Danshen Dripping Pills(CDDP)in improving cardiac function in patients with acute anterior ST-segment elevation myocardial infarction(AAMI).Between February 2021 and February 2023,247 eligible patients with AAMI after primary percutaneous coronary intervention were enrolled and randomly assigned(1∶1)to receive CDDP(n=126)or placebo(n=121),with a follow-up of 48 weeks.Compared with the placebo group,the CDDP group demonstrated a significant increase in left ventricular ejection fraction values after 24 weeks of treatment(least squares mean:3.31;95%confidence interval[CI]:1.72–4.90;P<0.001)and at the 48-week follow-up(least squares mean:4.35;95%CI:2.76–5.94;P<0.001).Significant reductions in N-terminal pro-B-type natriuretic peptide levels were observed in both groups at the 24-and 48-week visits with no significant difference between the two groups(P>0.1 for all).The incidence of major adverse cardiovascular and cerebrovascular events was 6.35%in the CDDP group and 5.79%in the placebo group(P=0.822).Notably,no serious adverse events were attributed to CDDP.These findings suggest that CDDP may be well tolerated and could improve left ventricular ejection fraction in patients with AAMI at 24 and 48 weeks.