Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for...Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).展开更多
With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysi...With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic ac...In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic acid)ligand.Mg_(2)Ti-ABTC exhibited permanent porosity for N_(2),CO_(2),CH_(4),C_(2)H_(2),C_(2)H_(4),and C_(2)H_(6)gas adsorption.Further-more,Mg_(2)Ti-ABTC exhibited outstanding photocatalytic activity in the oxidation of aromatic sulfides to the corre-sponding sulfoxides under ambient air conditions.Mechanism studies reveal that photoinduced holes(h^(+)),the super-oxide radical(·O_(2)^(-)),and singlet oxygen(^(1)O_(2))are pivotal species involved in the photocatalytic oxidation reaction.展开更多
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ...The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.展开更多
Bisphenol A(BPA)is a pervasive endocrine disruptor that enters the environment through anthropogenic activities,posing significant risks to ecosystems and human health.Advanced oxidation processes(AOPs)are promising m...Bisphenol A(BPA)is a pervasive endocrine disruptor that enters the environment through anthropogenic activities,posing significant risks to ecosystems and human health.Advanced oxidation processes(AOPs)are promising methods for the removal of organic microcontaminants in the environment.Biogenic manganese oxides(BMO)are reported as catalysts due to their transitionmetal nature,and are also readily generated bymanganeseoxidizing microorganisms in the natural environment,and therefore their roles and effects in AOPs-based environmental remediation should be investigated.However,biogenic ironmanganese oxides(BFMO)are actually generated rather than BMO due to the coexistence of ferrous ionswhich can be oxidized to iron oxides.Therefore,this study produced BFMO originating from a highly efficientmanganese-oxidizing fungus Cladosporium sp.XM01 and chose peroxymonosulfate(PMS)as a typical oxidant for the degradation of bisphenol A(BPA),a model organic micropollutant.Characterization results indicate that the formed BFMO was amorphouswith a lowcrystallinity.The BFMO/PMS system achieved a high degradation performance that 85%BPA was rapidly degraded within 60min,and therefore the contribution of BFMO cannot be ignored during PMS-based environmental remediation.Different from the findings of previous studies(mostly radicals and singlet oxygen),the degradationmechanism was first proven as a 100%electron-transfer pathway mediated by high-valence Mn under acidic conditions provided by PMS.The findings of this study provide new insights into the degradation mechanisms of pollutants using biogenic metal oxides in PMS activation and the contribution of their coexistence in AOPs-based environmental remediation.展开更多
A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performa...A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS,in situ DRIFTS,BET,XRD,SEM and H_(2)-TPR.Meanwhile,10%Gd0.25Ce0.75/MPB exhibited excellent performance,favorable SO_(2) and moisture toleration over a broad temperature range from 160 to 320℃,where it achieved 96.8%removal efficiency with 90.5%selectivity at 200℃.The single or united effects of O_(2),SO_(2),H_(2)O on HCHO abatement over 10%Gd_(0.25)Ce_(0.75)/MPB were tested,and the findings demonstrated that the suppressive effects of SO_(2) and H_(2)O outweighed the promoting influence of O_(2) within a specific range.Gd and Ce co-modified MPB revealed superior HCHO removal capability in contrast to that of Gd or Ce severally modified MPB,ascribing to the synergistic effect of GdO_(x) and CeO_(x) and benefitting from the augmentation of surface area and total pore volume,the aggrandizement of surface active oxygen species,the promotion of redox ability and the inhibition crystallization of CeO_(x).According to in situ DRIFTS,a series of intermediates including formate species and dioxymethylene(DOM)were produced,which would eventually decompose into H_(2)O and CO_(2).In addition,the mass transfer and diffusion of the reactants along with the accessibility of the catalytic sites were enlarged by the hierarchical porous structure of the support,which were also answerable for its distinguished catalytic performance.Furthermore,10%Gd0.25Ce0.75/MPB possessed remarkable potential for industrial applications.展开更多
The Kitaev honeycomb model has received significant attention due to its exactly solvable quantum spin liquid ground states and fractionalized excitations.Layered cobalt oxides have been considered as a promising plat...The Kitaev honeycomb model has received significant attention due to its exactly solvable quantum spin liquid ground states and fractionalized excitations.Layered cobalt oxides have been considered as a promising platform for realizing this model.However,in contrast to the conventional wisdom regarding the single-q zigzag magnetic order inferred from previous studies of the candidate materials Na_(2)IrO_(3) and α-RuCl_(3),recent experiments on two representative honeycomb cobalt oxides,hexagonal Na_(2)Co_(2)TeO_(6) and monoclinic Na_(3)Co_(2)SbO_(6),have uncovered evidence for more complex multi-q zigzag order variants.This review surveys the experimental strategies used to distinguish between single-and multi-q orders,along with the crystallographic symmetries of cobalt oxides,in comparison with previously studied systems.The general formation mechanism of multi-q order is also briefly discussed.The goal is to provide a solid ground for examining the relevance of multi-q order in honeycomb cobalt oxides and discuss its implications for the microscopic model of these intriguing quantum magnets.展开更多
The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s...The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].展开更多
In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,...In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).展开更多
Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and re...Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device.展开更多
Twinning-induced plasticity (TWIP) steel shows great potential in engineering due to its excellent strength and ductility synergy, and strengthening research on its corrosion resistance and high-temperature oxidation ...Twinning-induced plasticity (TWIP) steel shows great potential in engineering due to its excellent strength and ductility synergy, and strengthening research on its corrosion resistance and high-temperature oxidation resistance is critical for broader applications. Herein, the effect of annealing temperature on the high-temperature oxidation and corrosion behavior of Fe-Mn-Cr-Al-Cu-C TWIP steel is investigated. The results show that increasing the annealing temperature from 700℃ to 1100℃ reduced the mass gain of the TWIP steel oxidized at 800℃ for 8 h from 1.93 to 0.58 mg·cm^(−2). Additionally, the self-corrosion current density decreases from 6.52 × 10^(−6) to 1.32 × 10^(−6) A·cm^(−2), while charge transfer resistance increases from 1461 to 3339 Ω·cm^(−2). The reduction in grain boundaries and dislocation density in the TWIP steel attributed to the increase in annealing temperature inhibits short-circuit diffusion, local galvanic corrosion and pitting, ultimately improving both oxidation and corrosion resistance. Moreover, high-temperature annealing prevents the formation of carbon-rich compounds and ensures uniform element distribution. The accumulation of Cu and Cu-rich products formed at the interface further protects against Cl− erosion, inhibiting pitting and local corrosion, thus enhancing the corrosion resistance of the TWIP steel.展开更多
Proton ceramic fuel cell efficiently converts chemical energy into electrical energy,representing a pivotal component of future energy systems.However,its current performance is hindered by limitations in cathode and ...Proton ceramic fuel cell efficiently converts chemical energy into electrical energy,representing a pivotal component of future energy systems.However,its current performance is hindered by limitations in cathode and electrolyte materials,thereby impeding commercialization.Anion doping emerges as a promising strategy to enhance the electrochemical efficiency of perovskite-based cathodes and electrolytes.However,integrating this approach within a single-cell structure still requires further research.In this study,F-doped perovskite oxides BaCo_(0.4)Fe_(0.4)Zr_(0.1)Y_(0.1)O_(2.9-δ)F_(0.1)(BCFZYF)and BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(2.9-δ)F_(0.1)(BZCYYbF)were synthesized for use as the cathode and electrolyte,respectively,in proton ceramic fuel cells.Our findings demonstrate that F-doped perovskite oxides exhibit superior electrochemical performance and enhanced structural stability.Furthermore,doping both electrodes and electrolytes with F ions improves their interfacial compatibility.The cell configuration BCFZYF|BZCYYbF|Ni-BZCYYbF achieved a peak power density of 998 mW·cm^(−2)at 650℃using H_(2)as fuel,and it maintained stable operation for over 400 h at 550℃with a current density of 400 mA·cm^(−2).This research underscores an effective strategy for enhancing the performance and durability of proton ceramic fuel cells.展开更多
Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Desi...Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances.展开更多
Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-bas...Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-based layered oxide cathodes-a leading candidate for PIB systems-has been fundamentally constrained by irreversible phase transitions(PT)during the cycling process,manifesting as severe structural degradation and capacity fading.This review presents a transformative paradigm integrating machine learning(ML)with multiscale characterization to analyse the complex phase transition mechanisms in Mn-based cathodes.Through systematic ML-driven interrogation of structure-property relationships,we establish quantitative descriptors for phase stability and develop predictive models for transition dynamics.Furthermore,we highlight recent breakthroughs in cross-disciplinary approaches,enabling the rational design of PT-mitigated cathode architectures.By consolidating these insights into a unified knowledge framework,this work provides strategic guidelines for developing structurally robust Mn-based cathodes and outlines future research directions for next-generation PIB systems.展开更多
Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as lumi...Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as luminescent materials,magnetic materials,catalytic materials,electronic devices,they have an important strategic position.In the field of electrocatalysis,rare earth metal elements have great potential for development due to their unique 4f electron layer structure,spin orbit coupling,high reactivity,controllable coordination number,and rich optical properties.However,there is currently a lack of systematic reviews on the modification strategies of rare earth metal elements and the latest developments in electrocatalysis.Therefore,in order to stimulate the enthusiasm of researchers,this review focuses on the application progress of rare earth metal element modified metal oxides in multiple fields such as wastewater treatment,hydrogen peroxide synthesis,hydrogen evolution reaction(HER),carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and machine learning assisted research.In depth analysis of its electrocatalytic mechanism in various application scenarios and key factors affecting electrocatalytic performance.This review is of great significance for further developing high-performance and multifunctional electrocatalysts,and is expected to provide strong support for the development of energy,environment,and chemical industries.展开更多
The electrochemical nitrogen reduction reaction(NRR)under ambient conditions presents a promising approach for the eco-friendly and sustainable synthesis of ammonia,with a continuous emergence of potential electrocata...The electrochemical nitrogen reduction reaction(NRR)under ambient conditions presents a promising approach for the eco-friendly and sustainable synthesis of ammonia,with a continuous emergence of potential electrocatalysts.However,the low solubility and limited diffusion of N_(2)significantly hinder the achievement of satisfactory performance.In this context,we report an effective strategy to enhance NRR activity by introducing a metal-organic framework(MOF)membrane,specifically MIL-53(Al),onto a perovskite oxide(LiNbO_(3)),denoted as LN@MIL-X(X=0.2,0.4 and 0.6).The MIL-53(Al)membrane selectively recognizes and concentrates N_(2)at the catalyst interface while simultaneously repelling water molecules,thereby inhibiting the hydrogen evolution reaction(HER).This ultrathin nanostructure significantly improves the NRR performance of LN@MIL-X compared to pristine LiNbO_(3).Notably,LN@MIL-0.4 exhibits a maximum NH_(3)yield of 45.25 mg h^(-1)mg_(cat.)^(-1)with an impressive Faradaic efficiency(FE)of 86.41%at-0.45 V versus RHE in 0.1 mol L^(-1)Na_(2)SO_(4).This work provides a universal strategy for the design and synthesis of perovskite oxide electrocatalysts,facilitating high-efficiency ammonia synthesis.展开更多
High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that ...High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that allow for the development of advanced electrocatalysts for renewable energy conversion systems.The highentropy effect,crystal dislocations,cocktail effect,and slow diffusion in high-entropy layered double hydroxides(HE-LDHs)and amorphous materials(HE-AMs)have all been shown to boost electrocatalytic water oxidation performance significantly.These materials exhibit remarkable activity and stability in both alkaline and acidic conditions.HE-AMs,in particular,benefit from a variety of defects,including coordinatively unsaturated sites and loosely connected atoms,which are critical to their improved catalytic capabilities.HEMs engineering and precise nanostructure control can address the low intrinsic activity,restricted active sites,and poor conductivity of binary and ternary amorphous and LDH catalysts.This study discusses current advances in HE-LDHs and HE-AMs for water electrolysis,including synthesis methods,structural features,active site identification by DFT calculations,and their applications in water electrocatalysis.The presentation also covers potential problems and future directions for developing these materials in energy conversion device systems.展开更多
In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatu...In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatures and hydrocarbon concentrations in the FCC riser reactor to convert SOxinto H_(2)S.Subsequently,H_(2)S,along with the cracked gas,is processed downstream to produce sulfur.Thermodynamic analysis of the key reduction reactions in the FCC-DeSOxprocess revealed that complete conversion of SOxto H_(2)S is feasible in the dry gas(hydrogen-rich) prelift zone,as well as the upper and lower zones of the riser,upon achieving thermodynamic equilibrium.Experimental studies were conducted to replicate the conditions of these reaction zones using a low concentration of hydrogen gas as the reducing agent.Through process optimization,investigation of the minimum reaction time,and kinetic studies,the potential of this method for the complete reduction of SOxwas further confirmed.展开更多
Recently,high-entropy materials are attracting enormous attention in battery applications,encompassing both electrode materials and solid electrolytes,due to the pliability and diversification in material composition ...Recently,high-entropy materials are attracting enormous attention in battery applications,encompassing both electrode materials and solid electrolytes,due to the pliability and diversification in material composition and electronic structure.Theoretically,the rapid ion transport and the abundance of surface defects in high-entropy materials suggest a potential for enhancing the performance of composite solid-state electrolytes(CPEs).Herein,using a high-entropy oxide(HEO)filler to assess its potential contributions to CPEs is proposed.The distinctive structural distortions in HEO significantly improve the ionic conductivity(5×10^(−4) S·cm^(−1) at 60℃)and Li-ion transference number(0.57)of CPEs.Furthermore,the enhanced Li-ion transport capability extends the critical current density from 0.6 to 1.5 mA·cm^(−2) in Li/Li symmetric cells.In addition,all-solid-state batteries incorporating the HEO-modified CPEs exhibit superior rate performance and cycling stability.The work will enrich the application of HEOs in CPEs and provide fundamental understanding.展开更多
基金supported by the National Key Research and Development Project of China(No.2016YFD0800706)the Science and Technology Project of Fujian Province of China(No.2018Y0080)the Science and Technology Project of Xiamen(No.3502Z20172026)
文摘Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).
文摘With the aim to effectively depolymerize polyethylene terephthalate(PET)under mild reaction conditions,PET methanolysis and dimethyl terephthalate(DMT)hydrolysis are integrated in a catalyst system.Firstly,methanolysis of PET to DMT is achieved over Cu-Mg-Al oxide catalyst.Next,terephthalic acid(TPA)is prepared by DMT hydrolysis.It is found that hydrolysis of DMT to TPA can be promoted by introducing trace amount of water in this catalyst system.CuO-MgO-4.5Al_2O_(3)catalyst demonstrates the excellent catalytic performance for the depolymerization of PET with high conversion rate and TPA yield(100%and 99.5%,respectively)after reaction at 160℃for 6 h,which provides a new idea for the depolymerization of PET.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
文摘In the paper,we report a highly robust and porous bimetallic Ti-MOF(designated Mg_(2)Ti-ABTC)by utiliz-ing a trinuclear[Mg_(2)TiO(COO)_(6)]cluster and a tetradentate H_(4)ABTC(3,3′,5,5′-azobenzene tetracarboxylic acid)ligand.Mg_(2)Ti-ABTC exhibited permanent porosity for N_(2),CO_(2),CH_(4),C_(2)H_(2),C_(2)H_(4),and C_(2)H_(6)gas adsorption.Further-more,Mg_(2)Ti-ABTC exhibited outstanding photocatalytic activity in the oxidation of aromatic sulfides to the corre-sponding sulfoxides under ambient air conditions.Mechanism studies reveal that photoinduced holes(h^(+)),the super-oxide radical(·O_(2)^(-)),and singlet oxygen(^(1)O_(2))are pivotal species involved in the photocatalytic oxidation reaction.
基金supported by the National Key R&D Program of China(No.2022YFB2404400)the National Natural Science Foundation of China(Nos.U23A20577,52372168,92263206 and 21975006)+1 种基金the“The Youth Beijing Scholars program”(No.PXM2021_014204_000023)the Beijing Natural Science Foundation(Nos.2222001 and KM202110005009).
文摘The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.
基金supported by the National Key Research and Development Program of China(No.2021YFC3200700)the National Natural Science Foundation of China(No.52400010)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.24ZR1472300)the Fundamental Research Funds for the Central Universities.
文摘Bisphenol A(BPA)is a pervasive endocrine disruptor that enters the environment through anthropogenic activities,posing significant risks to ecosystems and human health.Advanced oxidation processes(AOPs)are promising methods for the removal of organic microcontaminants in the environment.Biogenic manganese oxides(BMO)are reported as catalysts due to their transitionmetal nature,and are also readily generated bymanganeseoxidizing microorganisms in the natural environment,and therefore their roles and effects in AOPs-based environmental remediation should be investigated.However,biogenic ironmanganese oxides(BFMO)are actually generated rather than BMO due to the coexistence of ferrous ionswhich can be oxidized to iron oxides.Therefore,this study produced BFMO originating from a highly efficientmanganese-oxidizing fungus Cladosporium sp.XM01 and chose peroxymonosulfate(PMS)as a typical oxidant for the degradation of bisphenol A(BPA),a model organic micropollutant.Characterization results indicate that the formed BFMO was amorphouswith a lowcrystallinity.The BFMO/PMS system achieved a high degradation performance that 85%BPA was rapidly degraded within 60min,and therefore the contribution of BFMO cannot be ignored during PMS-based environmental remediation.Different from the findings of previous studies(mostly radicals and singlet oxygen),the degradationmechanism was first proven as a 100%electron-transfer pathway mediated by high-valence Mn under acidic conditions provided by PMS.The findings of this study provide new insights into the degradation mechanisms of pollutants using biogenic metal oxides in PMS activation and the contribution of their coexistence in AOPs-based environmental remediation.
基金supported by the Scientific Research Project of Hunan Provincial EducationDepartment(No.22B0458)the National Natural Science Foundation of China(No.52270102).
文摘A chain of GdCe oxides boosted biochars derived from maize straw and sewage sludge(GdyCe1-y/MPBs)were fabricated for formaldehyde(HCHO)catalytic decomposition.The ingenerate relationship between the abatement performance and corresponding structural feature was comprehensively evaluated by XPS,in situ DRIFTS,BET,XRD,SEM and H_(2)-TPR.Meanwhile,10%Gd0.25Ce0.75/MPB exhibited excellent performance,favorable SO_(2) and moisture toleration over a broad temperature range from 160 to 320℃,where it achieved 96.8%removal efficiency with 90.5%selectivity at 200℃.The single or united effects of O_(2),SO_(2),H_(2)O on HCHO abatement over 10%Gd_(0.25)Ce_(0.75)/MPB were tested,and the findings demonstrated that the suppressive effects of SO_(2) and H_(2)O outweighed the promoting influence of O_(2) within a specific range.Gd and Ce co-modified MPB revealed superior HCHO removal capability in contrast to that of Gd or Ce severally modified MPB,ascribing to the synergistic effect of GdO_(x) and CeO_(x) and benefitting from the augmentation of surface area and total pore volume,the aggrandizement of surface active oxygen species,the promotion of redox ability and the inhibition crystallization of CeO_(x).According to in situ DRIFTS,a series of intermediates including formate species and dioxymethylene(DOM)were produced,which would eventually decompose into H_(2)O and CO_(2).In addition,the mass transfer and diffusion of the reactants along with the accessibility of the catalytic sites were enlarged by the hierarchical porous structure of the support,which were also answerable for its distinguished catalytic performance.Furthermore,10%Gd0.25Ce0.75/MPB possessed remarkable potential for industrial applications.
基金supported by the National Basic Research Program of China(Grant No.2021YFA1401901)the National Natural Science Foundation of China(Grant No.12474138)。
文摘The Kitaev honeycomb model has received significant attention due to its exactly solvable quantum spin liquid ground states and fractionalized excitations.Layered cobalt oxides have been considered as a promising platform for realizing this model.However,in contrast to the conventional wisdom regarding the single-q zigzag magnetic order inferred from previous studies of the candidate materials Na_(2)IrO_(3) and α-RuCl_(3),recent experiments on two representative honeycomb cobalt oxides,hexagonal Na_(2)Co_(2)TeO_(6) and monoclinic Na_(3)Co_(2)SbO_(6),have uncovered evidence for more complex multi-q zigzag order variants.This review surveys the experimental strategies used to distinguish between single-and multi-q orders,along with the crystallographic symmetries of cobalt oxides,in comparison with previously studied systems.The general formation mechanism of multi-q order is also briefly discussed.The goal is to provide a solid ground for examining the relevance of multi-q order in honeycomb cobalt oxides and discuss its implications for the microscopic model of these intriguing quantum magnets.
基金financial support from the National Key R&D Program of China(2021YFB3500700)the National Natural Science Foundation of China(22473042,22003016,and 92145302).
文摘The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2].
基金supported by the Scientific Research Project of Hunan Provincial Department of Education (No.22B0458)the National Natural Science Foundation of China (No.52270102).
文摘In this study,a string of Cr-Mnco-modified activated coke catalysts(XCryMn1-y/AC)were prepared to investigate toluene and Hg^(0) removal performance.Multifarious characterizations including XRD,TEM,SEM,in situ DRIFTS,BET,XPS and H_(2)-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg^(0) removal efficiency at 200℃.By varying the experimental gas components and conditions,it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg^(0).Although O_(2) promoted the abatement of toluene and Hg^(0),the inhibitory role of H_(2)O and SO_(2) offset the promoting effect of O_(2) to some extent.Toluene significantly inhibited Hg^(0) removal,resulting from that toluene was present at concentrations orders of magnitude greater than mercury’s or the catalyst was more prone to adsorb toluene,while Hg^(0) almost exerted non-existent influence on toluene elimination.The mechanistic analysis showed that the forms of toluene and Hg^(0) removal included both adsorption and oxidation,where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr^(3+)+Mn^(3+)/Mn^(4+)+Cr^(6+)+Mn^(2+),which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process,and even the CrMn_(1.5)O_(4) spinel structure could provide a larger catalytic interface,thus enhancing the adsorption/oxidation of toluene and Hg^(0).Therefore,its excellent physicochemical properties make it a costeffective potential industrial catalyst with outstanding synergistic toluene and Hg^(0) removal performance and preeminent resistance to H_(2)O and SO_(2).
基金supported by National Natural Science Fundation of China(Nos.52170086,22308194,U22A20423)Natural Science Foundation of Shandong Province(No.ZR2021ME013)+1 种基金Taishan Scholars Program of Shandong Province(No.tsqn202211012)Shandong Provincial Excellent Youth(No.ZR2022YQ47)。
文摘Although the powder Fenton-like catalysts have exhibited high catalytic performances towards pollutant degradation,they cannot be directly used for Fenton-like industrialization considering the problems of loss and recovery.Therefore,the membrane fixation of catalyst is an important step to realize the actual application of Fenton-like catalysts.In this work,an efficient catalyst was developed with Co-N_(x)configuration facilely reconstructed on the surface of Co_(3)O_(4)(Co-N_(x)/Co_(3)O_(4)),which exhibited superior catalytic activity.We further fixed the highly efficient Co-N_(x)/Co_(3)O_(4)onto three kinds of organic membranes and one kind of inorganic ceramic membrane installing with the residual PMS treatment device to investigate its catalytic stability and sustainability.Results indicated that the inorganic ceramic membrane(CM)can achieve high water flux of 710 L m-2h-1,and the similar water flux can be achieved by Co-N_(x)/Co_(3)O_(4)/CM even without the pressure extraction.We also employed the Co-N_(x)/Co_(3)O_(4)/CM system to the wastewater secondary effluent,and the pollutant in complicated secondary effluent could be highly removed by the Co-N_(x)/Co_(3)O_(4)/CM system.This paper provides a new point of view for the application of metal-based catalysts with M-N_(x)coordination in catalytic reaction device.
基金support from the National Natural Science Foundation of China(Grant No.52174359)is greatly acknowledged.
文摘Twinning-induced plasticity (TWIP) steel shows great potential in engineering due to its excellent strength and ductility synergy, and strengthening research on its corrosion resistance and high-temperature oxidation resistance is critical for broader applications. Herein, the effect of annealing temperature on the high-temperature oxidation and corrosion behavior of Fe-Mn-Cr-Al-Cu-C TWIP steel is investigated. The results show that increasing the annealing temperature from 700℃ to 1100℃ reduced the mass gain of the TWIP steel oxidized at 800℃ for 8 h from 1.93 to 0.58 mg·cm^(−2). Additionally, the self-corrosion current density decreases from 6.52 × 10^(−6) to 1.32 × 10^(−6) A·cm^(−2), while charge transfer resistance increases from 1461 to 3339 Ω·cm^(−2). The reduction in grain boundaries and dislocation density in the TWIP steel attributed to the increase in annealing temperature inhibits short-circuit diffusion, local galvanic corrosion and pitting, ultimately improving both oxidation and corrosion resistance. Moreover, high-temperature annealing prevents the formation of carbon-rich compounds and ensures uniform element distribution. The accumulation of Cu and Cu-rich products formed at the interface further protects against Cl− erosion, inhibiting pitting and local corrosion, thus enhancing the corrosion resistance of the TWIP steel.
基金supported by the National Natural Science Foundation of China(No.22278203)The authors appreciate the support of Zhejiang Zheneng Technology and Environment Group Co.,Ltd’s project(No.TD-KJ-23-005:Methanation of carbon monoxide coupled with in-situ formed hydrogen in a low-temperature SOEC reactor).
文摘Proton ceramic fuel cell efficiently converts chemical energy into electrical energy,representing a pivotal component of future energy systems.However,its current performance is hindered by limitations in cathode and electrolyte materials,thereby impeding commercialization.Anion doping emerges as a promising strategy to enhance the electrochemical efficiency of perovskite-based cathodes and electrolytes.However,integrating this approach within a single-cell structure still requires further research.In this study,F-doped perovskite oxides BaCo_(0.4)Fe_(0.4)Zr_(0.1)Y_(0.1)O_(2.9-δ)F_(0.1)(BCFZYF)and BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(2.9-δ)F_(0.1)(BZCYYbF)were synthesized for use as the cathode and electrolyte,respectively,in proton ceramic fuel cells.Our findings demonstrate that F-doped perovskite oxides exhibit superior electrochemical performance and enhanced structural stability.Furthermore,doping both electrodes and electrolytes with F ions improves their interfacial compatibility.The cell configuration BCFZYF|BZCYYbF|Ni-BZCYYbF achieved a peak power density of 998 mW·cm^(−2)at 650℃using H_(2)as fuel,and it maintained stable operation for over 400 h at 550℃with a current density of 400 mA·cm^(−2).This research underscores an effective strategy for enhancing the performance and durability of proton ceramic fuel cells.
基金supported by the National Natural Science Foundation of China(No.52171174).The authors acknowledge Dr.Chao Zhang from the Instrumentation Service Center for Physical Sciences at Westlake University for magnetization measurements.
文摘Cryogenic magnetic cooling based on the principle of the magnetocaloric effects(MCEs)of magnetic solids has been recognized as an alternative cooling technology due to its significant economic and social benefits.Designing novel magnetic materials with good magnetocaloric performance is a prerequisite for practical applications.In this study,three gadolinium-transition metal-based high entropy oxides(HEOs)of Gd(Fe_(1/4)Ni_(1/4)Al_(1/4)Cr_(1/4))O_(3),Gd(Fe_(1/5)Ni_(1/5)Al_(1/5)Cr_(1/5)Co_(1/5))O_(3),and Gd(Fe_(1/6)Ni_(1/6)Al_(1/6)Cr_(1/6)Co_(1/6)Mn_(1/6))O_(3)were designed and systematically characterized regarding their structural and cryogenic magnetic properties.These HEOs were confirmed to crystallize into a single-phase perovskite-type orthorhombic structure with a homogeneous microstructure,reveal a second-order magnetic transition at low temperatures,and exhibit significant cryogenic MCEs.The magnetocaloric performances of the present HEOs,identified by magnetic entropy changes,relative cooling power,and temperature-averaged entropy changes,were com-parable with recently reported candidate materials.The present study indicates potential applications for cryogenic magnetic cooling of the present HEOs and provides meaningful clues for designing and exploring HEOs with good cryogenic magnetocaloric performances.
基金financially supported by the National Natural Science Foundation of China(U20A20247)the National Key Research and Development Program of the Ministry of Science and Technology(2022YFA1402504)+1 种基金Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion(MATEC2023KF002)Guangdong Science and Technology Department(STKJ2021016)。
文摘Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-based layered oxide cathodes-a leading candidate for PIB systems-has been fundamentally constrained by irreversible phase transitions(PT)during the cycling process,manifesting as severe structural degradation and capacity fading.This review presents a transformative paradigm integrating machine learning(ML)with multiscale characterization to analyse the complex phase transition mechanisms in Mn-based cathodes.Through systematic ML-driven interrogation of structure-property relationships,we establish quantitative descriptors for phase stability and develop predictive models for transition dynamics.Furthermore,we highlight recent breakthroughs in cross-disciplinary approaches,enabling the rational design of PT-mitigated cathode architectures.By consolidating these insights into a unified knowledge framework,this work provides strategic guidelines for developing structurally robust Mn-based cathodes and outlines future research directions for next-generation PIB systems.
基金supported by the National Key Research and Development Program of China(No.2023YFC3708005)The Fundamental Research Funds for the Central Universities,Nankai University(No.63241208)supported by the National Natural Science Foundation of China(Nos.21872102 and 22172080)。
文摘Rare earth metal elements include lanthanide elements as well as scandium and yttrium,totaling seventeen metal elements.Due to the wide application prospects of rare earth metal elements in various fields such as luminescent materials,magnetic materials,catalytic materials,electronic devices,they have an important strategic position.In the field of electrocatalysis,rare earth metal elements have great potential for development due to their unique 4f electron layer structure,spin orbit coupling,high reactivity,controllable coordination number,and rich optical properties.However,there is currently a lack of systematic reviews on the modification strategies of rare earth metal elements and the latest developments in electrocatalysis.Therefore,in order to stimulate the enthusiasm of researchers,this review focuses on the application progress of rare earth metal element modified metal oxides in multiple fields such as wastewater treatment,hydrogen peroxide synthesis,hydrogen evolution reaction(HER),carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and machine learning assisted research.In depth analysis of its electrocatalytic mechanism in various application scenarios and key factors affecting electrocatalytic performance.This review is of great significance for further developing high-performance and multifunctional electrocatalysts,and is expected to provide strong support for the development of energy,environment,and chemical industries.
基金supported by the National Natural Science Foundation of China(No.U22A20418,22075196)the Research Project Supported by Shanxi Scholarship Council of China(2022–050).
文摘The electrochemical nitrogen reduction reaction(NRR)under ambient conditions presents a promising approach for the eco-friendly and sustainable synthesis of ammonia,with a continuous emergence of potential electrocatalysts.However,the low solubility and limited diffusion of N_(2)significantly hinder the achievement of satisfactory performance.In this context,we report an effective strategy to enhance NRR activity by introducing a metal-organic framework(MOF)membrane,specifically MIL-53(Al),onto a perovskite oxide(LiNbO_(3)),denoted as LN@MIL-X(X=0.2,0.4 and 0.6).The MIL-53(Al)membrane selectively recognizes and concentrates N_(2)at the catalyst interface while simultaneously repelling water molecules,thereby inhibiting the hydrogen evolution reaction(HER).This ultrathin nanostructure significantly improves the NRR performance of LN@MIL-X compared to pristine LiNbO_(3).Notably,LN@MIL-0.4 exhibits a maximum NH_(3)yield of 45.25 mg h^(-1)mg_(cat.)^(-1)with an impressive Faradaic efficiency(FE)of 86.41%at-0.45 V versus RHE in 0.1 mol L^(-1)Na_(2)SO_(4).This work provides a universal strategy for the design and synthesis of perovskite oxide electrocatalysts,facilitating high-efficiency ammonia synthesis.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(No.52021004)the Funds for Chongqing Talents Plan(No.CQYC2021059563)+1 种基金the Fundamental Research Funds for the Central Universities(No.2021CDJQY-027)the National Natural Science Foundation of China(No.52206089).
文摘High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that allow for the development of advanced electrocatalysts for renewable energy conversion systems.The highentropy effect,crystal dislocations,cocktail effect,and slow diffusion in high-entropy layered double hydroxides(HE-LDHs)and amorphous materials(HE-AMs)have all been shown to boost electrocatalytic water oxidation performance significantly.These materials exhibit remarkable activity and stability in both alkaline and acidic conditions.HE-AMs,in particular,benefit from a variety of defects,including coordinatively unsaturated sites and loosely connected atoms,which are critical to their improved catalytic capabilities.HEMs engineering and precise nanostructure control can address the low intrinsic activity,restricted active sites,and poor conductivity of binary and ternary amorphous and LDH catalysts.This study discusses current advances in HE-LDHs and HE-AMs for water electrolysis,including synthesis methods,structural features,active site identification by DFT calculations,and their applications in water electrocatalysis.The presentation also covers potential problems and future directions for developing these materials in energy conversion device systems.
基金supported by General Program of National Natural Science Foundation of China (22178385)。
文摘In this work,a new process for achieving the recovery of elemental sulfur by utilizing a fluidized catalytic cracking(FCC) riser reactor for SOxtreatment(FCC-DeSOx) is proposed.The process leverages the high temperatures and hydrocarbon concentrations in the FCC riser reactor to convert SOxinto H_(2)S.Subsequently,H_(2)S,along with the cracked gas,is processed downstream to produce sulfur.Thermodynamic analysis of the key reduction reactions in the FCC-DeSOxprocess revealed that complete conversion of SOxto H_(2)S is feasible in the dry gas(hydrogen-rich) prelift zone,as well as the upper and lower zones of the riser,upon achieving thermodynamic equilibrium.Experimental studies were conducted to replicate the conditions of these reaction zones using a low concentration of hydrogen gas as the reducing agent.Through process optimization,investigation of the minimum reaction time,and kinetic studies,the potential of this method for the complete reduction of SOxwas further confirmed.
基金supported by the National Natural Science Foundation of China(No.52002094)Shenzhen Science and Technology Program(Nos.JCYJ20210324121411031,JSGG202108021253804014 and RCBS20210706092218040)Shenzhen Steady Support Plan(Nos.GXWD20221030205923001 and GXWD20201230155427003-20200824103000001).
文摘Recently,high-entropy materials are attracting enormous attention in battery applications,encompassing both electrode materials and solid electrolytes,due to the pliability and diversification in material composition and electronic structure.Theoretically,the rapid ion transport and the abundance of surface defects in high-entropy materials suggest a potential for enhancing the performance of composite solid-state electrolytes(CPEs).Herein,using a high-entropy oxide(HEO)filler to assess its potential contributions to CPEs is proposed.The distinctive structural distortions in HEO significantly improve the ionic conductivity(5×10^(−4) S·cm^(−1) at 60℃)and Li-ion transference number(0.57)of CPEs.Furthermore,the enhanced Li-ion transport capability extends the critical current density from 0.6 to 1.5 mA·cm^(−2) in Li/Li symmetric cells.In addition,all-solid-state batteries incorporating the HEO-modified CPEs exhibit superior rate performance and cycling stability.The work will enrich the application of HEOs in CPEs and provide fundamental understanding.