期刊文献+
共找到58,228篇文章
< 1 2 250 >
每页显示 20 50 100
Electrospun Nanofibrous Transition Metal-based Bifunctional Electrocatalysts Toward Overall Water Splitting
1
作者 YIN Yongting LU Xiaofeng 《高等学校化学学报》 北大核心 2026年第1期87-107,共21页
Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen e... Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS. 展开更多
关键词 Electrospinning Nanofibers Transition metal-based catalyst Overall water splitting Performance optimization
在线阅读 下载PDF
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
2
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
Mechanism of enhancing NH_(3)-SCR performance of Mn-Ce/AC catalyst by the structure regulation of activated carbon with calcite in coal
3
作者 NIU Jian LI Yuhang +4 位作者 BAI Baofeng WEN Chaolu LI Linbo ZHANG Huirong GUO Shaoqing 《燃料化学学报(中英文)》 北大核心 2026年第1期69-79,共11页
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ... To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced. 展开更多
关键词 CALCITE activated carbon structure Mn-Ce/AC catalyst NH_(3)-SCR performance
在线阅读 下载PDF
Heteroatom‑Coordinated Fe–N_(4) Catalysts for Enhanced Oxygen Reduction in Alkaline Seawater Zinc‑Air Batteries
4
作者 Wenhan Fang Kailong Xu +5 位作者 Xinlei Wang Yuanhang Zhu Xiuting Li Hui Liu Danlei Li Jun Wu 《Nano-Micro Letters》 2026年第3期554-568,共15页
Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction... Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity. 展开更多
关键词 Single-atom catalyst Zinc-air battery Seawater catalyst Oxygen reduction reaction
在线阅读 下载PDF
Undercoordination engineering of chromium single-atom catalyst with optimized d-p hybridization for lithium-sulfur batteries
5
作者 Hongyang Li Jianjun Zhang +5 位作者 Yingrui Ding Zhanpeng Huang Pengsen Qian Fanyang Sun Huimin Wang Gaoran Li 《Nano Research》 2026年第1期519-530,共12页
Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly wh... Sluggish sulfur redox kinetics remain a critical bottleneck in the advancement of high-performance lithiumsulfur batteries(LSBs).Single-atom catalysts(SACs)offer a promising solution to this limitation,particularly when their coordination structures are carefully engineered.Here,we develop a chromium-based SAC featuring a unique undercoordinated CrN_(3) configuration to boost sulfur electrochemistry.Compared with conventional CrN_(4),the CrN_(3) motif lowers 3d orbital occupancy and meanwhile activates the in-plane hybridizations with S 3p orbitals upon interaction with polysulfides,contributing to moderate adsorption strength and reduced energy barriers for bidirectional sulfur conversions.Additionally,the integration of the two-dimensional(2D)porous framework ensures abundant electrochemically active surfaces and efficiently exposed active sites.As a result,CrN_(3)-based cells demonstrate fast and durable sulfur redox reactions,enabling an ultralow capacity decay of 0.0075%per cycle over 1000 cycles and a high-rate capability of 651.9 mAh·g^(-1)at 5 C.The CrN_(3) catalyst retains robust catalytic efficiency under demanding conditions,delivering a high areal capacity of 5.53 mAh·cm^(-2) at high sulfur loading and lean electrolyte.This work establishes a compelling paradigm of SAC coordination engineering for designing advanced sulfur electrocatalysts for next-generation LSBs. 展开更多
关键词 lithium-sulfur batteries single-atom catalysts coordination structure orbital hybridization sulfur electrocatalysis
原文传递
High‑Entropy Amorphous Catalysts for Water Electrolysis:A New Frontier
6
作者 Gaihong Wang Zhijie Chen +4 位作者 Jinliang Zhu Jiangzhou Xie Wei Wei Yi‑Ming Yan Bing‑Jie Ni 《Nano-Micro Letters》 2026年第3期141-179,共39页
High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environm... High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability. 展开更多
关键词 High‐entropy amorphous catalysts ELECTROCATALYSIS Water splitting Structural disorder Multimetallic synergy
在线阅读 下载PDF
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
7
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
Advances in oxygen evolution reaction electrocatalysts via direct oxygen-oxygen coupling pathway:Recent progress,challenges,and perspectives
8
作者 Xinying Yang Zhengda Chen +4 位作者 Guoxin Zhang Yuping Sun Jiangbo Lu Haiping Lin Xing Fan 《Nano Research》 2026年第1期23-49,共27页
Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the li... Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed. 展开更多
关键词 oxygen evolution reaction *O-*O coupling mechanism dual-atom catalysts machine learning
原文传递
Low-porosity carbon templates mitigate mass transport limitations in Fe-N-C catalysts
9
作者 Hongmin Sun Ziliang Deng +4 位作者 Jingbo Li Shuailong Zhang Mufan Li Haibo Jin Zipeng Zhao 《Nano Research》 2026年第1期399-408,共10页
Fe-N-C catalysts,as promising non-precious metal alternatives for the oxygen reduction reaction(ORR),still suffer from severe mass transport limitations in proton exchange membrane fuel cells(PEMFCs)due to water flood... Fe-N-C catalysts,as promising non-precious metal alternatives for the oxygen reduction reaction(ORR),still suffer from severe mass transport limitations in proton exchange membrane fuel cells(PEMFCs)due to water flooding of active sites embedded in micropores.Although pore engineering through a selected template is a general strategy,the structural features of an ideal template,particularly those governing the exposure of active sites and thus affecting mass transport,remain elusive.Here,we demonstrate that low-porosity carbon templates maximize the ratio of active sites distributed at or near the surface,thereby enhancing their exposure and accessibility while reducing mass transport resistance during the ORR process.The C_(lp-1)@PPy and C_(lp-2)@PPy(PPy=polypyrrole)catalysts,derived from low-porosity carbon templates,achieve peak power densities of 0.96 and 1.03 W·cm^(-2) under H_(2)/O_(2)and 0.50 and 0.52 W·cm^(-2) under H_(2)/air,demonstrating excellent performance in PEMFC tests.Structural and electrochemical characterizations reveal that the enhanced surface exposure of active sites effectively mitigates mass transport resistance during the ORR,thereby offering a general design principle for overcoming mass transport limitations in Fe-N-C catalysts for PEMFC applications. 展开更多
关键词 Fe-N-C catalysts low-porosity carbon template surface-exposed atomic sites mass transport oxygen reduction reaction fuel cell
原文传递
Advancements in dual-atom-site catalysts for electrocatalysis
10
作者 Pan Zhou Weidong Ruan +1 位作者 Tieli Zhou Jingqi Guan 《Nano Research》 2026年第1期140-158,共19页
Dual-atom-site catalysts(DASCs)have garnered a lot of interest in the electrocatalysis community because of their atomic usage,stability,activity,and selectivity.This review systematically introduces the latest advanc... Dual-atom-site catalysts(DASCs)have garnered a lot of interest in the electrocatalysis community because of their atomic usage,stability,activity,and selectivity.This review systematically introduces the latest advancements of DASCs for electrocatalytic applications.Design principles of DASCs are first discussed,including atom-atom,atom-cluster,and atom-particle synergy.Then,rational modulation tactics are creatively proposed to speed up the construction of high-performance DASCs for uncovering structure-performance relationships.Moreover,advanced characterization techniques are provided to show the dynamic evolution of dual-atom sites throughout electrocatalysis.Finally,future challenges and perspectives are taken into account.This paper provides useful directions for a better understanding and design of DASCs for eco-friendly energy storage and conversion technologies. 展开更多
关键词 dual-atom-site catalyst oxygen reduction reaction oxygen evolution reaction carbon dioxide reduction reaction nitrate reduction reaction
原文传递
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation 被引量:3
11
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
Bimetallic Single‑Atom Catalysts for Water Splitting 被引量:1
12
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
13
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Research progress on metal-support interactions over Ni-based catalysts for CH_(4)-CO_(2)reforming reaction 被引量:1
14
作者 SUN Kai JIANG Jianfei +4 位作者 LIU Zixuan GENG Shiqi LIU Zhenmin YANG Jiaqian LI Shasha 《燃料化学学报(中英文)》 北大核心 2025年第4期434-451,共18页
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni... With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies. 展开更多
关键词 CO_(2)utilization CH_(4)-CO_(2)reforming Ni-based catalysts metal-support interactions supports
在线阅读 下载PDF
Boosted hydrodeoxygenation of lignin and its derivatives to cycloalkanes over Ni catalysts with surface decoration of AlPO_(4)species 被引量:1
15
作者 Xinyong Diao Linge Hao +2 位作者 Yawen Shi Shengbo Zhang Na Ji 《Journal of Energy Chemistry》 2025年第5期360-371,共12页
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit... Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages. 展开更多
关键词 Nickel catalyst Heterogeneous catalysis LIGNIN HYDRODEOXYGENATION CYCLOALKANES
在线阅读 下载PDF
High-yield pentanes-plus production via hydrogenation of carbon dioxide:Revealing new roles of zirconia as promoter of iron catalyst with long-term stability 被引量:1
16
作者 Sheraz Ahmed Junjung Rohmat Sugiarto +6 位作者 Wonjoong Yoon Muhammad Irshad Heuntae Jo Syeda Sidra Bibi Soek Ki Kim Muhammad Kashif Khan Jaehoon Kim 《Journal of Energy Chemistry》 2025年第3期431-442,共12页
The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly... The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly ZrO_(2),have rarely been investigated.To plug this knowledge gap,a new Fe catalyst promoted with Na and partially reduced ZrO_(x)(Na-FeZrO_(x-9))was developed in this study;the catalyst helped produce C_(5+)hydrocarbons in remarkably high yield(26.3%at 360℃).In contrast to ZrO_(x)-free Fe-oxide,NaFeZrO_(x)-9 exhibited long-term stability for CO_(2)hydrogenation(750 h on-stream).The findings revealed multiple roles of ZrO_(x).Notably,ZrO_(x)decorated the Fe-oxide particles after calcination,thereby suppressing excess particle aggregation during the reaction,and acted as a"coke remover"to eliminate the carbon deposited on the catalyst surface.Additionally,oxygen vacancy(O_(v))sites in ZrO_(x)and electron transfer from ZrO_(x)to Fe sites facilitated the adsorption of CO_(2)at the Zr-Fe interface. 展开更多
关键词 CO_(2)hydrogenation C5+hydrocarbons Fe catalysts ZrO_(2)promoter Fischer Tropsch synthesis catalyst deactivation
在线阅读 下载PDF
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:2
17
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Highly dispersed MoO_(x)-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes 被引量:1
18
作者 Xincheng Cao Jiaping Zhao +5 位作者 Feng Long Peng Liu Yuguo Dong Zupeng Chen Junming Xu Jianchun Jiang 《Chinese Journal of Catalysis》 2025年第4期256-266,共11页
The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction tempera... The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products. 展开更多
关键词 Bimetallic catalyst Interface engineering HYDRODEOXYGENATION Fatty esters Diesel-range alkanes
在线阅读 下载PDF
Degradation of bisphenol F by peroxymonosulfate activated with palladium-based catalysts 被引量:1
19
作者 Xiaomei Zhou Minghui Li +4 位作者 Jifei Hou Jingya Sun Shourong Zheng Yingjun Chen Qingxin Guan 《Journal of Environmental Sciences》 2025年第4期54-65,共12页
In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_... In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_(2),Pd/CeO_(2),Pd/TiO_(2)and Pd/Al2O3),Pd/TiO_(2)exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content.Pd/TiO_(2)prepared by the deposition method leads to high Pd dispersion,which are the key factors for efficient BPF degradation.The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed.Density functional theory(DFT)calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles.The catalytic activities are strongly dependent on the structural features of the catalysts.Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals. 展开更多
关键词 Supported Pd catalysts Peroxymonosulfate activation Bisphenol F DFT calculations Mechanism
原文传递
Optimization of Mg-based hydrogen storage materials with multicomponent and high-entropy catalysts 被引量:1
20
作者 Yu Sun Jiayi Cheng +2 位作者 Yaru Jiang Yafei Liu Yijing Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2699-2712,共14页
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma... Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems. 展开更多
关键词 magnesium hydride multicomponent materials high-entropy materials hydrogen storage catalyst doping kinetics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部