期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe,Gd and P single and tri-doped TiO_2 nanomaterials 被引量:9
1
作者 seyed mohsen adyani mohammad ghorbani 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第1期72-85,共14页
High performance Fe-Gd-P tri-doped TiO2 nanoparticles (1 at% for each dopant) were successfully synthesized by a modified sol-gel method. Various analytical and spectroscopic techniques were carried out to determine... High performance Fe-Gd-P tri-doped TiO2 nanoparticles (1 at% for each dopant) were successfully synthesized by a modified sol-gel method. Various analytical and spectroscopic techniques were carried out to determine the physicochemical properties of the prepared samples, including XRD, EDX, FESEM, BET, FFIR, XPS, PL, EIS and UV-Vis diffuse reflectance spectroscopy. The photocatalytic activities of prepared samples were evaluated by photo degradation of methyl orange (MO) and 4-chlorophenol (4- CP) as model pollutants under visible light irradiation. Effects of each dopant on different properties of TiO2 nanoparticles were investigated. Results show that Gd and P doping enhances Ti02 surface textural properties by forming Ti O Gd and Ti-O-P bonds. It is found that Gd plays a superior role in increasing oxygen vacancies and organic species on TiO2 surface. Gd doping also facilitates transferring of the photo-induced charge carriers to the surface adsorbed species. The enhanced electronic band structure and visible light response, as well as high electron lifetime of Fe-Gd-P tri-doped sample is mainly attributed to Fe and Gd doping. The tri-doped TiO2 with rate constant ofkapp - 1.28 ~ 10-2 min-1 for MO and kapp ~ 0.94 ~ 10-2 min-1 for 4-CP, shows the highest photodegradation rate among all samples including undoped and single doped samples. The improved photocatalytic performance of Fe-Gd-P tri- doped Ti02 is due to the synergistic effect of enhanced surface chemistry and textural properties, increased number of surface adsorbed hydroxyl groups and organic species, improved visible light ab- sorption, increased lifetime of the photo-induced electron/hole pairs and boosted interfacial charge transfer. 展开更多
关键词 fe-gd-p tri-doped TiO2Sol-gel synthesisPhotodegradationVisible light responseSynergistic effectRare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部