The microstructural evolution of the gas atomized Fe-25Cr-3.2C powders was investigated by using optical microscope, scanning electron microscope, and X-ray diffraction. The experimental results showed that the atomiz...The microstructural evolution of the gas atomized Fe-25Cr-3.2C powders was investigated by using optical microscope, scanning electron microscope, and X-ray diffraction. The experimental results showed that the atomized Fe-25Cr-3.2C powders were mainly composed of austenite and (Fe,Cr)7 C3 carbide. Eutectic microstructure was developed in the larger particles, whereas dendritic microstrueture was obtained in the particles with diameter less than 38 μm. The reason for microstructure change should be the difference of nucleation undercooling for particles.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50701030)National Basic Research Program of China(2010CB630802)
文摘The microstructural evolution of the gas atomized Fe-25Cr-3.2C powders was investigated by using optical microscope, scanning electron microscope, and X-ray diffraction. The experimental results showed that the atomized Fe-25Cr-3.2C powders were mainly composed of austenite and (Fe,Cr)7 C3 carbide. Eutectic microstructure was developed in the larger particles, whereas dendritic microstrueture was obtained in the particles with diameter less than 38 μm. The reason for microstructure change should be the difference of nucleation undercooling for particles.