(Fes3Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fes3Ga17alloy is improved by adding Cr element. The Wiedeman...(Fes3Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fes3Ga17alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires are investigated. The largest observed Wiedemann twists of 245 s.cm-1 and 182 s.cm-1 are detected in the annealed Fes3Ga17 and (Fe83Ga17)98Cr2 wires, respectively. The magnetostrictions of the annealed Fes3Ga17 and (Fes3Ga17)98Cr2 wires are 160 ppm and 107 ppm, respectively. The maximum of the Wiedemann twist increases with magnetostriction increasing. However the magnetostriction is just one important factor that affects the Wiedemann effect of alloy wire, and the relationship between magnetostriction and Wiedemann effect is a complex function rather than a simple function.展开更多
Spontaneous four wave mixing in nonlinear waveguide is one of the excellent technique for generating photon pairs in well-defined guided modes. Here we present a comprehensive study of the frequency characteristic of ...Spontaneous four wave mixing in nonlinear waveguide is one of the excellent technique for generating photon pairs in well-defined guided modes. Here we present a comprehensive study of the frequency characteristic of correlated photon pairs generated in telecom C-band from a dispersion-engineered silicon wire waveguide. We have demonstrated that the waveguide configuration,shape of pump pulse,two-photon absorption as well as linear losses have significant influences on the biphoton spectral characteristics and the amount of frequency entanglement generated. The superior performance as well as the structural compactness and CMOS compatibility makes the silicon wire waveguide an ideal integrated platform for the implementation of on-chip quantum technologies.展开更多
Short wire pairs are simple metamaterial structures. This structure includes a dielectric substrate with metal strips on both sides, of which the electric and magnetic resonant frequencies can be controlled by adjusti...Short wire pairs are simple metamaterial structures. This structure includes a dielectric substrate with metal strips on both sides, of which the electric and magnetic resonant frequencies can be controlled by adjusting the length of the metallic wires. However, to vary the magnetic resonant frequency requires a change in the length of the strip and another patterned photomask. In this investigation, a simple method is introduced that requires only one patterned photomask by shifting the position of faced wire pairs up and down.展开更多
In this paper, we propose a novel structure of quantum waveguide. In this structure we tailored the quantum wire by Gaussian Profile. Thus, the Dirac-Delta function potentials are weighted according to Gaussian distri...In this paper, we propose a novel structure of quantum waveguide. In this structure we tailored the quantum wire by Gaussian Profile. Thus, the Dirac-Delta function potentials are weighted according to Gaussian distribution function. We studied the electronic transmission properties through this tailored quantum waveguide structure. We have assumed that single free-electron channel is incident on the structure and the scattering of electrons is solely from the geometric nature of the problem. We have used the transfer matrix method to study the electron transmission. Coherent Tunneling is achieved through this structure, which is well-defined allowed conduction bands. The electronic conductance spectrum depends on the number of the Dirac delta function potential in the quantum wire. When the number of Dirac delta function potentials in the structure and their strengths are increased, both well defined conductance bands and sharper and narrower forbidden bands are formed. This novel structure has a good defect tolerance. The structure tolerates strength defect and tolerates position defect for the central Dirac delta function in the Gaussian distribution.展开更多
The basic propagation properties of the silica and silicon subwavelength-diameter hollow wire waveguides have been investigated by comparison. It shows that the silica and silicon subwavelength-diameter hollow wire wa...The basic propagation properties of the silica and silicon subwavelength-diameter hollow wire waveguides have been investigated by comparison. It shows that the silica and silicon subwavelength-diameter hollow wire waveguides have some interesting properties, such as enhanced evanescent field in the cladding, enhanced intensity in the hollow core, and large waveguide dispersion. For the different confinement ability, the enhanced field in the hollow core and cladding of the silica subwavelength-diameter hollow wire is much stronger than that of the silicon one for the same size.展开更多
Two types of 1×2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subseq...Two types of 1×2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3×18.2 and 3×14.3 (#m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function.展开更多
为研制大位移磁致伸缩位移传感器,对扭转超声波在波导丝中的衰减特性进行研究。由于波导丝材料的均一性受拉伸等加工环节的影响,材料的内部变化对检测信号的影响大于超声波在短距离传播的衰减变化。提出的检测方案将永磁体固定在波导丝...为研制大位移磁致伸缩位移传感器,对扭转超声波在波导丝中的衰减特性进行研究。由于波导丝材料的均一性受拉伸等加工环节的影响,材料的内部变化对检测信号的影响大于超声波在短距离传播的衰减变化。提出的检测方案将永磁体固定在波导丝正中间,去掉两端的阻尼,使得向两端传播的超声波受到同样的反射,通过检测两个回波的幅值来测量超声波衰减系数,可以滤除材料不均匀性产生的影响。搭建了磁致伸缩位移传感器实验平台,基于所提实验方法,测得频率为65 k Hz的扭转超声波在线径为0.5 mm且不受拉力作用下的Fe-Ga和Fe-Ni波导丝的衰减系数分别为1.34 d B/m和1.57 d B/m。实验还对比了不同线径Fe-Ga波导丝、不同扭转超声波频率和波导丝在不同拉力作用下的衰减系数变化,结果表明:衰减系数随波导丝线径的增大而增大;衰减系数与扭转超声波的频率呈正相关;衰减系数随波导丝两端拉力的增大先减小后趋于稳定。展开更多
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606304)the National Natural Science Foundation for Postdoctoral Scientists of China (Grant No. 2011M500229)the Program for New Century Excellent Talents in University,China (Grant No. NCET-09-02120)
文摘(Fes3Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fes3Ga17alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires are investigated. The largest observed Wiedemann twists of 245 s.cm-1 and 182 s.cm-1 are detected in the annealed Fes3Ga17 and (Fe83Ga17)98Cr2 wires, respectively. The magnetostrictions of the annealed Fes3Ga17 and (Fes3Ga17)98Cr2 wires are 160 ppm and 107 ppm, respectively. The maximum of the Wiedemann twist increases with magnetostriction increasing. However the magnetostriction is just one important factor that affects the Wiedemann effect of alloy wire, and the relationship between magnetostriction and Wiedemann effect is a complex function rather than a simple function.
基金Supported by the State Key Program for Basic Research of China under Grant No.2012CB921802the National Natural Science Foundation of China under Grant Nos.91321312+6 种基金911210011132106311174121and 61475099the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Program for New Century Excellent Talents in University(NCET)a Foundation for the Author of National Excellent Doctoral Dissertation of People’s Republic of China(FANEDD)
文摘Spontaneous four wave mixing in nonlinear waveguide is one of the excellent technique for generating photon pairs in well-defined guided modes. Here we present a comprehensive study of the frequency characteristic of correlated photon pairs generated in telecom C-band from a dispersion-engineered silicon wire waveguide. We have demonstrated that the waveguide configuration,shape of pump pulse,two-photon absorption as well as linear losses have significant influences on the biphoton spectral characteristics and the amount of frequency entanglement generated. The superior performance as well as the structural compactness and CMOS compatibility makes the silicon wire waveguide an ideal integrated platform for the implementation of on-chip quantum technologies.
文摘Short wire pairs are simple metamaterial structures. This structure includes a dielectric substrate with metal strips on both sides, of which the electric and magnetic resonant frequencies can be controlled by adjusting the length of the metallic wires. However, to vary the magnetic resonant frequency requires a change in the length of the strip and another patterned photomask. In this investigation, a simple method is introduced that requires only one patterned photomask by shifting the position of faced wire pairs up and down.
文摘In this paper, we propose a novel structure of quantum waveguide. In this structure we tailored the quantum wire by Gaussian Profile. Thus, the Dirac-Delta function potentials are weighted according to Gaussian distribution function. We studied the electronic transmission properties through this tailored quantum waveguide structure. We have assumed that single free-electron channel is incident on the structure and the scattering of electrons is solely from the geometric nature of the problem. We have used the transfer matrix method to study the electron transmission. Coherent Tunneling is achieved through this structure, which is well-defined allowed conduction bands. The electronic conductance spectrum depends on the number of the Dirac delta function potential in the quantum wire. When the number of Dirac delta function potentials in the structure and their strengths are increased, both well defined conductance bands and sharper and narrower forbidden bands are formed. This novel structure has a good defect tolerance. The structure tolerates strength defect and tolerates position defect for the central Dirac delta function in the Gaussian distribution.
文摘The basic propagation properties of the silica and silicon subwavelength-diameter hollow wire waveguides have been investigated by comparison. It shows that the silica and silicon subwavelength-diameter hollow wire waveguides have some interesting properties, such as enhanced evanescent field in the cladding, enhanced intensity in the hollow core, and large waveguide dispersion. For the different confinement ability, the enhanced field in the hollow core and cladding of the silica subwavelength-diameter hollow wire is much stronger than that of the silicon one for the same size.
基金supported in part by the National Natural Science Foundation of China (No. 60977050)the National "973" Program of China (Nos. 2009CB320302 and 2011CB301704)
文摘Two types of 1×2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3×18.2 and 3×14.3 (#m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function.
文摘为研制大位移磁致伸缩位移传感器,对扭转超声波在波导丝中的衰减特性进行研究。由于波导丝材料的均一性受拉伸等加工环节的影响,材料的内部变化对检测信号的影响大于超声波在短距离传播的衰减变化。提出的检测方案将永磁体固定在波导丝正中间,去掉两端的阻尼,使得向两端传播的超声波受到同样的反射,通过检测两个回波的幅值来测量超声波衰减系数,可以滤除材料不均匀性产生的影响。搭建了磁致伸缩位移传感器实验平台,基于所提实验方法,测得频率为65 k Hz的扭转超声波在线径为0.5 mm且不受拉力作用下的Fe-Ga和Fe-Ni波导丝的衰减系数分别为1.34 d B/m和1.57 d B/m。实验还对比了不同线径Fe-Ga波导丝、不同扭转超声波频率和波导丝在不同拉力作用下的衰减系数变化,结果表明:衰减系数随波导丝线径的增大而增大;衰减系数与扭转超声波的频率呈正相关;衰减系数随波导丝两端拉力的增大先减小后趋于稳定。
基金Supported by the Fund Project for Shenzhen fundamental research programme (JC200903120019A)the Fund Project for Shenzhen Key Lab R&D Programme(200806170029A)