The escalating global dissemination of plasmid-mediated antibiotic resistance poses a formidable threat to global health.Conjugation stands as a pivotal mechanism for horizontal gene transfer among bacterial populatio...The escalating global dissemination of plasmid-mediated antibiotic resistance poses a formidable threat to global health.Conjugation stands as a pivotal mechanism for horizontal gene transfer among bacterial populations,facilitating the spread of antibiotic resistance genes(ARGs).Microelectrolysis has garnered attention as an efficacious strategy for mitigating antibiotic concentrations in wastewater,yet its potential impact on ARG horizontal transfer remain largely unexplored.This comprehensive investigation unveils that microelectrolysis not only influences but significantly accelerates the conjugative transfer of ARG-harboring plasmids.Remarkably,this phenomenon is corroborated at the microbial community scale,underscoring its ecological relevance.Alarmingly,the study highlights the vulnerability of intestinalmicroorganisms to acquire antibiotic resistance under electrolytic stimulation,posing heightened risks to both animal and human health.Delving deeper,the study elucidates the underlyingmechanisms responsible for this enhanced conjugative transfer.It reveals that microelectrolysis augments the abundance of mating-competent cells,triggers the generation of reactive oxygen species,inflicts modest membrane damage,and upregulates the expression of genes critical for conjugation.These findings collectively contribute to a more profound comprehension of the environmental dissemination dynamics and associated public health implications of ARGs in the context of wastewater treatment employing microelectrolytic technologies.展开更多
To examine treatment and remediation of a wastewater lagoon with poor biodegradability, a typical wastewater lagoon in Tianjin, China, was treated and remedied using microelectrolysis and modified demand aeration tank...To examine treatment and remediation of a wastewater lagoon with poor biodegradability, a typical wastewater lagoon in Tianjin, China, was treated and remedied using microelectrolysis and modified demand aeration tank (DAT)/intermittent aeration tank (IAT) methods. After pretreatment by microelectrolysis, the removal efficiency of chemical oxygen demand (COD) was up to 64.6% and the ratio of BOC/COD in the effluent increased from 0.013 to 0.609. The removal rates of CODcr and NH4+-N were affected by sludge backflow rate, mixed liquor suspended solids (MLSS), and hydraulic retention time (HRT) in the modified DAT/IAT reactor. The highest removal rates of CODcr and NH4+-N were up to 78.9% and 62.6%, respectively, when the sludge backflow rate was 38.0 mL/min, the total HRT was 8.0 hr and MLSS was 4088.0 mg/L. In this case, some protozoa and metazoa were observed in activated sludge and biofilm carriers. Most of chrominance was removed by microelectrolysis treatment, while the modified DAT/IAT methods were more effective for CODcr and NH4+-N removal.展开更多
基金supported by Jiangsu Agriculture Science and Technology Innovation Fund(No.CX(22)3001)。
文摘The escalating global dissemination of plasmid-mediated antibiotic resistance poses a formidable threat to global health.Conjugation stands as a pivotal mechanism for horizontal gene transfer among bacterial populations,facilitating the spread of antibiotic resistance genes(ARGs).Microelectrolysis has garnered attention as an efficacious strategy for mitigating antibiotic concentrations in wastewater,yet its potential impact on ARG horizontal transfer remain largely unexplored.This comprehensive investigation unveils that microelectrolysis not only influences but significantly accelerates the conjugative transfer of ARG-harboring plasmids.Remarkably,this phenomenon is corroborated at the microbial community scale,underscoring its ecological relevance.Alarmingly,the study highlights the vulnerability of intestinalmicroorganisms to acquire antibiotic resistance under electrolytic stimulation,posing heightened risks to both animal and human health.Delving deeper,the study elucidates the underlyingmechanisms responsible for this enhanced conjugative transfer.It reveals that microelectrolysis augments the abundance of mating-competent cells,triggers the generation of reactive oxygen species,inflicts modest membrane damage,and upregulates the expression of genes critical for conjugation.These findings collectively contribute to a more profound comprehension of the environmental dissemination dynamics and associated public health implications of ARGs in the context of wastewater treatment employing microelectrolytic technologies.
基金supported by the Tianjin Committee of Science and Technology as a Special Innovative Project (No. 08FDZDSF03402)the National Hi-Tech Research and Development Program (863) of China (No.2007AA061201)the Open Fund Project from the Key Laboratory of Pollution Process and Environmental Criteria (Ministry of Education),Nankai University,China
文摘To examine treatment and remediation of a wastewater lagoon with poor biodegradability, a typical wastewater lagoon in Tianjin, China, was treated and remedied using microelectrolysis and modified demand aeration tank (DAT)/intermittent aeration tank (IAT) methods. After pretreatment by microelectrolysis, the removal efficiency of chemical oxygen demand (COD) was up to 64.6% and the ratio of BOC/COD in the effluent increased from 0.013 to 0.609. The removal rates of CODcr and NH4+-N were affected by sludge backflow rate, mixed liquor suspended solids (MLSS), and hydraulic retention time (HRT) in the modified DAT/IAT reactor. The highest removal rates of CODcr and NH4+-N were up to 78.9% and 62.6%, respectively, when the sludge backflow rate was 38.0 mL/min, the total HRT was 8.0 hr and MLSS was 4088.0 mg/L. In this case, some protozoa and metazoa were observed in activated sludge and biofilm carriers. Most of chrominance was removed by microelectrolysis treatment, while the modified DAT/IAT methods were more effective for CODcr and NH4+-N removal.