Effects of Ti-Ce refiners on the solidification structure and the hot ductility of Fe-36Ni invar alloy were investigated, the corresponding mechanisms were also discussed. The results showed that the solidification of...Effects of Ti-Ce refiners on the solidification structure and the hot ductility of Fe-36Ni invar alloy were investigated, the corresponding mechanisms were also discussed. The results showed that the solidification of the alloy was remarkably refined with the addition of 0.05%Ti-0.01%Ce refiners. Not only did the columnar grains become shorter and thinner, but the growth pattern of them changed into staggered growth from linear growth. The alloy had a bad hot ductility below 1050 °C, which was mainly attrib-uted to weaker boundaries and the presence of grain boundary sliding. However, the hot ductility of the alloy was highly enhanced at 850-1000 °C as the addition of 0.05%Ti-0.01%Ce refiners could refine grain sizes, thus hinder grain boundary sliding, strengthen the grain boundary and promote the grain boundary movement. The alloy had a good hot ductility over 1050 °C, dynamic recrys-tallization occurred and was found to be responsible for the better hot ductility. In addition, the average coefficient of thermal ex-pansion of the alloy decreased a little with the addition of 0.05%Ti-0.01%Ce refiners, which met the requirement of material prop-erties.展开更多
Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in ...Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.展开更多
The effect of Ce, La and mischmetal on the solidification structure of Fe-36Ni invar alloy was investigated. The results show that great amounts of high-melting point compounds ( Ce2O3, La202S and ( Ce, La)2O2S ) ...The effect of Ce, La and mischmetal on the solidification structure of Fe-36Ni invar alloy was investigated. The results show that great amounts of high-melting point compounds ( Ce2O3, La202S and ( Ce, La)2O2S ) respectively formed in the alloy with the addition of Ce, La or mischmetal. Based on the theory of lattice misfit, the lattice misfit between the (0001) surfaces of Ce2O3,Ce2O2S and La2O2S and (100) surface of Fe-36Ni invar alloy were 6.21%, 5.77 % and 5.42 %, respectively, which are relatively low. Therefore, Ce2 O3, La2 O2 S and ( Ce, La) 2 O2 S could serve as the core of heterogeneous nucleation, improve the equiaxed grain ratio, reduce the equiaxed grain size and refine the solidification structure of alloy.展开更多
Oxidation study of Fe-36Ni and Fe-46Ni alloys was conducted on the effect of temperature under a 0.2 atm oxygen partial pressure. The weight of both specimens was continuously measured by TGA (thermogravimetric appar...Oxidation study of Fe-36Ni and Fe-46Ni alloys was conducted on the effect of temperature under a 0.2 atm oxygen partial pressure. The weight of both specimens was continuously measured by TGA (thermogravimetric apparatus) at various temperatures and it was found that the weigh was gained with an increase of temperature. The oxidation behavior of Fe-36/46Ni alloys was found to be followed by parabolic rate law and the rate constants were linearly proportional to the temperature. In addition, activation energies of Fe-36Ni and Fe-46Ni alloys were calculated to be 106.49 kJ/mol and 58.99 kJ/mol, respectively. The cross sectional area of oxide scale was examined by SEM (scanning electron microscopy) and analyzed by XRD (X-ray diffraction) and EDX (energy-dispersive X-ray spectroscopy).展开更多
The hot ductility of Fe-36Ni invar alloy with different additions of the element cerium was investigated using a Gleeble-3800 thermal-mechanical simulator over the temperature range 850 - 1 050℃, and the improvement ...The hot ductility of Fe-36Ni invar alloy with different additions of the element cerium was investigated using a Gleeble-3800 thermal-mechanical simulator over the temperature range 850 - 1 050℃, and the improvement mechanism of the hot ductility was analyzed using a combination of SEM, EDS, and OM. The results indicated that Fe-36Ni invar alloy exhibited poor hot ductility below 1 050℃, which was mainly attributed to weak grain boundaries and the action of grain boundary sliding. However, the alloys with cerium contents of 0. 016% and 0.024% both demonstrated substantial improvement in the hot ductility over the entire testing temperature range. The observed improvement of the hot ductility of the alloy with 0. 016% cerium at 950 ~C and the alloy with 0.024% cerium at 900℃ was associated mainly with the grain boundary strengthening and the restriction of the grain boundary sliding because the addition of cerium reduced the segregation of sulfur at grain boundaries and refined the grain structure. The occurrence and acceleration of dynamic recrystallization were found to be responsible for the high hot ductility of the alloy with 0.016% cerium at 1 000℃ and the alloy with 0. 024% cerium at 950 - 1 000℃ as a result of the refinement of the grain structure by addition of cerium.展开更多
Invar steels possess excellent thermal expansion properties,making them suitable as materials for manufacturing precision instruments.However,conventional invar steels lack sufficient strength for engineering applicat...Invar steels possess excellent thermal expansion properties,making them suitable as materials for manufacturing precision instruments.However,conventional invar steels lack sufficient strength for engineering applications,and various strengthening methods are urgently needed to enhance their strength.In this work,the possibility of enhancing the strength and maintaining low coefficient of thermal expansion(CTE)of the steel through mechanical heat treatment and the introduction of vanadium carbonitride is demonstrated.V-N microalloying and various heat treatment processes enable invar steel to enhance its strength while maintaining low thermal expansion properties.The strength of low-nitrogen addition invar steel measured 593 MPa during direct aging,representing a 44.6% increase compared to invar steel.After undergoing cold-deformation aging,the strength of low-nitrogen invar steel increased to 790 MPa,indicating a substantial improvement in strength relative to the direct aging condition.Notably,the coefficient of thermal expansion remained at 0.98×10^(-6)℃^(-1).By further increasing N content to introduce more vanadium carbonitride,the strength of high-nitrogen invar steel reached 927 MPa under cold-deformation process while maintaining a low CTE value of 1.02×10^(-6)℃^(-1).This achieved an extraordinary balance of high strength and low CTE,which is due to a well combination of various strengthening mechanisms,especially the Orowan strengthening where dislocations continuously bypass vanadium carbonitride to achieve the strengthening effect.The resulting findings are important for future preparation of excellent properties invar steel in industrial applications.展开更多
文摘Effects of Ti-Ce refiners on the solidification structure and the hot ductility of Fe-36Ni invar alloy were investigated, the corresponding mechanisms were also discussed. The results showed that the solidification of the alloy was remarkably refined with the addition of 0.05%Ti-0.01%Ce refiners. Not only did the columnar grains become shorter and thinner, but the growth pattern of them changed into staggered growth from linear growth. The alloy had a bad hot ductility below 1050 °C, which was mainly attrib-uted to weaker boundaries and the presence of grain boundary sliding. However, the hot ductility of the alloy was highly enhanced at 850-1000 °C as the addition of 0.05%Ti-0.01%Ce refiners could refine grain sizes, thus hinder grain boundary sliding, strengthen the grain boundary and promote the grain boundary movement. The alloy had a good hot ductility over 1050 °C, dynamic recrys-tallization occurred and was found to be responsible for the better hot ductility. In addition, the average coefficient of thermal ex-pansion of the alloy decreased a little with the addition of 0.05%Ti-0.01%Ce refiners, which met the requirement of material prop-erties.
基金Item Sponsored by Research Fund for the Central Universities of China(N130607002)National Natural Science Foundation of China(51174057,51274062)Research Fund for the Doctoral Program of Higher Education of China(20130042110040)
文摘Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.
文摘The effect of Ce, La and mischmetal on the solidification structure of Fe-36Ni invar alloy was investigated. The results show that great amounts of high-melting point compounds ( Ce2O3, La202S and ( Ce, La)2O2S ) respectively formed in the alloy with the addition of Ce, La or mischmetal. Based on the theory of lattice misfit, the lattice misfit between the (0001) surfaces of Ce2O3,Ce2O2S and La2O2S and (100) surface of Fe-36Ni invar alloy were 6.21%, 5.77 % and 5.42 %, respectively, which are relatively low. Therefore, Ce2 O3, La2 O2 S and ( Ce, La) 2 O2 S could serve as the core of heterogeneous nucleation, improve the equiaxed grain ratio, reduce the equiaxed grain size and refine the solidification structure of alloy.
文摘Oxidation study of Fe-36Ni and Fe-46Ni alloys was conducted on the effect of temperature under a 0.2 atm oxygen partial pressure. The weight of both specimens was continuously measured by TGA (thermogravimetric apparatus) at various temperatures and it was found that the weigh was gained with an increase of temperature. The oxidation behavior of Fe-36/46Ni alloys was found to be followed by parabolic rate law and the rate constants were linearly proportional to the temperature. In addition, activation energies of Fe-36Ni and Fe-46Ni alloys were calculated to be 106.49 kJ/mol and 58.99 kJ/mol, respectively. The cross sectional area of oxide scale was examined by SEM (scanning electron microscopy) and analyzed by XRD (X-ray diffraction) and EDX (energy-dispersive X-ray spectroscopy).
文摘The hot ductility of Fe-36Ni invar alloy with different additions of the element cerium was investigated using a Gleeble-3800 thermal-mechanical simulator over the temperature range 850 - 1 050℃, and the improvement mechanism of the hot ductility was analyzed using a combination of SEM, EDS, and OM. The results indicated that Fe-36Ni invar alloy exhibited poor hot ductility below 1 050℃, which was mainly attributed to weak grain boundaries and the action of grain boundary sliding. However, the alloys with cerium contents of 0. 016% and 0.024% both demonstrated substantial improvement in the hot ductility over the entire testing temperature range. The observed improvement of the hot ductility of the alloy with 0. 016% cerium at 950 ~C and the alloy with 0.024% cerium at 900℃ was associated mainly with the grain boundary strengthening and the restriction of the grain boundary sliding because the addition of cerium reduced the segregation of sulfur at grain boundaries and refined the grain structure. The occurrence and acceleration of dynamic recrystallization were found to be responsible for the high hot ductility of the alloy with 0.016% cerium at 1 000℃ and the alloy with 0. 024% cerium at 950 - 1 000℃ as a result of the refinement of the grain structure by addition of cerium.
基金supported by the Shanxi Provincial Basic Research Program(No.202403021221046)the National Natural Science Foundation of China(Nos.52004180 and 52204350)+5 种基金the China Postdoctoral Science Foundation(No.2020M683706XB)the Research Project Supported by Shanxi Scholarship Council of China(No.2023-080)the Fund Projects for the Central Government to Guide the Development of Local Science and Technology(No.236Z1023G)the Hebei Province High-level Talent Funding Project(No.B20231016)the National College Student Innovation and Entrepreneurship Training Program(No.202410112116)the Graduate Student Scientific Research Innovation Program(No.2024KY278).
文摘Invar steels possess excellent thermal expansion properties,making them suitable as materials for manufacturing precision instruments.However,conventional invar steels lack sufficient strength for engineering applications,and various strengthening methods are urgently needed to enhance their strength.In this work,the possibility of enhancing the strength and maintaining low coefficient of thermal expansion(CTE)of the steel through mechanical heat treatment and the introduction of vanadium carbonitride is demonstrated.V-N microalloying and various heat treatment processes enable invar steel to enhance its strength while maintaining low thermal expansion properties.The strength of low-nitrogen addition invar steel measured 593 MPa during direct aging,representing a 44.6% increase compared to invar steel.After undergoing cold-deformation aging,the strength of low-nitrogen invar steel increased to 790 MPa,indicating a substantial improvement in strength relative to the direct aging condition.Notably,the coefficient of thermal expansion remained at 0.98×10^(-6)℃^(-1).By further increasing N content to introduce more vanadium carbonitride,the strength of high-nitrogen invar steel reached 927 MPa under cold-deformation process while maintaining a low CTE value of 1.02×10^(-6)℃^(-1).This achieved an extraordinary balance of high strength and low CTE,which is due to a well combination of various strengthening mechanisms,especially the Orowan strengthening where dislocations continuously bypass vanadium carbonitride to achieve the strengthening effect.The resulting findings are important for future preparation of excellent properties invar steel in industrial applications.