We study the interfacial Dzyaloshinskii-Moriya interactions(i-DMI)of Fe/Pt bilayers grown on Si substrates with MgO,SiO_(2),or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering(...We study the interfacial Dzyaloshinskii-Moriya interactions(i-DMI)of Fe/Pt bilayers grown on Si substrates with MgO,SiO_(2),or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering(BLS)measurement.The obtained i-DMI energy values for Fe/Pt on MgO,Ta,and SiO_(2) buffer layers are 0.359,0.321,and 0.274 mJ/m~2,respectively.The large i-DMI value observed in Fe/Pt system on the MgO buffer layer can be attributed to the good interfacial quality and the Rshaba effect at the MgO/Fe interface.Moreover,the MgO/Fe/Pt system,benefiting from better sample quality,exhibits a lower damping factor.Furthermore,layer-resolved first-principles calculations are carried out to gain a more in-depth understanding of the origin of the i-DMI in the Fe/Pt system.The results indicate that in the Fe(110)/Pt(111)system,the substantial DMI energy between Fe spins at the interface is related to a significant change in spin-orbit coupling(SOC)energy in the neighboring Pt layer.In contrast,for the MgO(002)/Fe(002)system,both the DMI and its related SOC energy are concentrated at the interfacial Fe layer.Our investigation will provide a valuable insight into the spintronic community in exploring novel devices with chirality dependence.展开更多
低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe...低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe/Pt(111)表面只存在顶位吸附;当暴露量大于0.4L,除了顶位吸附外,桥位吸附开始出现;顶位吸附分子的C-O键振动峰随着暴露量的增加不断向高波数方向偏移。退火温度影响Pt/Fe/Pt(111)表面CO的吸附形式,低于255K时,顶位吸附分子的脱附速率大于桥位吸附分子;高于255 K时,桥位吸附分子的脱附速率较大,并先于顶位吸附的CO从表面完全脱附,其完全脱附温度比Pt(111)表面低50 K。展开更多
An Si(001)/SiO2/Ti/Pt/Fe/Cu multilayer was prepared by direct-current magnetic sputtering system. The phase composition of the film was characterized by X-ray diffractometry(XRD), and the microstructure was observed b...An Si(001)/SiO2/Ti/Pt/Fe/Cu multilayer was prepared by direct-current magnetic sputtering system. The phase composition of the film was characterized by X-ray diffractometry(XRD), and the microstructure was observed by scanning electronic microscopy(SEM). Through the film annealed in magnetic field perpendicular to the surface of the film, FCC FePt film with (001) texture was obtained. And the density of the particle in the film annealed without magnetic field is very small compared with that in the film annealed with magnetic field. And the effect of magnetic field annealing on the microstructure of Fe/Pt film and the segregation of FCC FePt phase were also discussed.展开更多
An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodeposition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of F...An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodeposition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.展开更多
基金Project supported by the National Basic Research Program of China (Grant Nos.12074220,12304151,12204355,and 12204356)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2022QA085)。
文摘We study the interfacial Dzyaloshinskii-Moriya interactions(i-DMI)of Fe/Pt bilayers grown on Si substrates with MgO,SiO_(2),or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering(BLS)measurement.The obtained i-DMI energy values for Fe/Pt on MgO,Ta,and SiO_(2) buffer layers are 0.359,0.321,and 0.274 mJ/m~2,respectively.The large i-DMI value observed in Fe/Pt system on the MgO buffer layer can be attributed to the good interfacial quality and the Rshaba effect at the MgO/Fe interface.Moreover,the MgO/Fe/Pt system,benefiting from better sample quality,exhibits a lower damping factor.Furthermore,layer-resolved first-principles calculations are carried out to gain a more in-depth understanding of the origin of the i-DMI in the Fe/Pt system.The results indicate that in the Fe(110)/Pt(111)system,the substantial DMI energy between Fe spins at the interface is related to a significant change in spin-orbit coupling(SOC)energy in the neighboring Pt layer.In contrast,for the MgO(002)/Fe(002)system,both the DMI and its related SOC energy are concentrated at the interfacial Fe layer.Our investigation will provide a valuable insight into the spintronic community in exploring novel devices with chirality dependence.
文摘低温(110~130K)下,将次表层Fe结构的Pt-Fe模型催化剂(即Pt/Fe/Pt(111)结构)暴露于不同量CO气体,经不同温度退火后,采用高分辨电子能量损失谱(HREELS)研究催化剂表面CO分子的振动谱。结果表明,当CO的暴露量低于0.2 L (Langmuir)时,Pt/Fe/Pt(111)表面只存在顶位吸附;当暴露量大于0.4L,除了顶位吸附外,桥位吸附开始出现;顶位吸附分子的C-O键振动峰随着暴露量的增加不断向高波数方向偏移。退火温度影响Pt/Fe/Pt(111)表面CO的吸附形式,低于255K时,顶位吸附分子的脱附速率大于桥位吸附分子;高于255 K时,桥位吸附分子的脱附速率较大,并先于顶位吸附的CO从表面完全脱附,其完全脱附温度比Pt(111)表面低50 K。
文摘An Si(001)/SiO2/Ti/Pt/Fe/Cu multilayer was prepared by direct-current magnetic sputtering system. The phase composition of the film was characterized by X-ray diffractometry(XRD), and the microstructure was observed by scanning electronic microscopy(SEM). Through the film annealed in magnetic field perpendicular to the surface of the film, FCC FePt film with (001) texture was obtained. And the density of the particle in the film annealed without magnetic field is very small compared with that in the film annealed with magnetic field. And the effect of magnetic field annealing on the microstructure of Fe/Pt film and the segregation of FCC FePt phase were also discussed.
基金supported by the Iranian Nanotechnology Society and the Office of the Vice-chancellor in Charge of Research at Malek-Ashtar University of Technology
文摘An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodeposition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.