期刊文献+
共找到261篇文章
< 1 2 14 >
每页显示 20 50 100
Highly efficient Fe/N/C catalyst using adenosine as C/N-source for APEFC
1
作者 Huan Ren Ying Wang +3 位作者 Xun Tang Juntao Lu Li Xiao Lin Zhuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期616-621,共6页
An environmentally friendly precursor, adenosine, has been used as a dual source of C and N to synthesize nitrogen-doped carbon catalyst with/without Fe. A hydrothermal carbonization method has been used and water is ... An environmentally friendly precursor, adenosine, has been used as a dual source of C and N to synthesize nitrogen-doped carbon catalyst with/without Fe. A hydrothermal carbonization method has been used and water is the carbonization media. The morphology of samples with/without Fe component has been compared by HRTEM, and the result shows that Fe can promote the graphitization of carbon. Further electro-chemical test shows that the oxygen reduction reaction(ORR) catalytic activity of Fe-containing sample(C–Fe N) is much higher than that of the Fe-free sample(C–N). Additionally, the intermediates of C–Fe N formed during each synthetic procedure have been thoroughly characterized by multiple methods,and the function of each procedure has been discussed. The C–Fe N sample exhibits high electro-catalytic stability and superior electro-catalytic activity toward ORR in alkaline media, with its half-wave potential 20 mV lower than that of commercial Pt/C(40 wt%). It is further incorporated into alkaline polymer electrolyte fuel cell(APEFC) as the cathode material and led to a power density of 100 m W/cm;. 展开更多
关键词 n-doped carbon catalyst ORR Fuel cell Alkaline polymer electrolyte fe/n/c
在线阅读 下载PDF
The degradation of cathodic Fe/N/C catalyst in PEMFCs:The evolution of remanent active sites after demetallation
2
作者 Xiaohua Yang Wentao Sun +5 位作者 Jiatang Chen Yang Gao Rongxian Zhang Qun Luo Tao Lyu Lei Du 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第6期100-106,共7页
The state-of-the-art Fe/N/C catalyst has presented comparable initial cathode performance to the benchmark Pt/C catalyst in proton exchange membrane fuel cells(PEMFCs).However,the major bottleneck is its significant a... The state-of-the-art Fe/N/C catalyst has presented comparable initial cathode performance to the benchmark Pt/C catalyst in proton exchange membrane fuel cells(PEMFCs).However,the major bottleneck is its significant activity decay in real-world PEMFC cells.The superposed“fast decay”and“slow decay”have been well documented to describe the degradation process of Fe/N/C catalysts during PEMFC operation.The fast decay has been well understood in close relation to the demetallation at the initial 15-h stability test.Nevertheless,it is still unclear how the remanent active sites evolve after demetallation.To this end,the catalyst performance and evolution of a typical Fe/N/C active site were herein investigated through postmortem characterizations of the membrane electrode assemblies(MEAs)after different operations.It is presented that 1 bar pressure and 80℃ temperature are the optimized conditions for Fe/N/C MEA.Particularly,the“fast decay”in the initial 15 h is immune to the various operating parameters,while the“slow decay”highly depends on the applied temperature and pressure.According to the X-ray absorption spectra(XAS)analysis and stability test of MEA,the gradual evolution of Fe-N coordination to Fe-O is found correlated with the“slow decay”and accounts for the catalyst decay after the demetallation process. 展开更多
关键词 fe/n/c Stability Decay mechanism Metal oxidation PEMFcS
原文传递
Comparative development and evaluation of Fe–N–C electrocatalysts for the oxygen reduction reaction:The effect of pyrolysis and iron-bipyridine structures
3
作者 Georgios Charalampopoulos Maria K.Daletou 《Materials Reports(Energy)》 2025年第2期86-95,I0002,共11页
Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses... Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses challenges to the commercial viability of PEMFCs.Non-platinum group metal(non-PGM)alternatives,like nitrogen-coordinated transition metals in atomic dispersion(M–N–C catalysts),show significant potential.This work presents a comparative study of two distinct sets of Fe–N–C materials,prepared by pyrolyzing hybrid composites of polyaniline(PANI)and iron(Ⅱ)chloride on a hard template.One set uses bipyridine(BPy)as an additional nitrogen source and iron ligand,offering an innovative approach.The findings reveal that the choice of pyrolysis temperature and atmosphere influences the catalyst properties.The use of ammonia in pyrolysis emerges as a crucial parameter for promoting atomic dispersion of iron,as well as increasing surface area and porosity.The optimal catalyst,prepared using BPy and ammonia,exhibits a half-wave potential of 0.834 V in 0.5 M H_(2)SO_(4)(catalyst loading of 0.6 mg cm^(-2)),a mass activity exceeding 3 A g^(-1)and high stability in acidic electrolyte,positioning it as a promising non-PGM structure in the field. 展开更多
关键词 PEM fuel cells Oxygen reduction reaction non-PGM electrocatalysts ORR activity fenc structures
在线阅读 下载PDF
N掺杂TiO_(2)-Fe_(2)O_(3)/C光催化剂的制备及其光催化降解性研究 被引量:2
4
作者 李洁 张佳 +1 位作者 陈连喜 吕博 《化工新型材料》 北大核心 2025年第2期210-214,共5页
为寻找一种简便且具有良好孔结构的光催化剂合成路径,提升并拓宽其光催化应用范围,通过将N掺杂的双金属Ti-Fe MOFs在500℃的空气气氛中直接热解制备N掺杂TiO_(2)-Fe_(2)O_(3)/C纳米结构。获得的产物显示出独特的树枝状结构,且具有较大... 为寻找一种简便且具有良好孔结构的光催化剂合成路径,提升并拓宽其光催化应用范围,通过将N掺杂的双金属Ti-Fe MOFs在500℃的空气气氛中直接热解制备N掺杂TiO_(2)-Fe_(2)O_(3)/C纳米结构。获得的产物显示出独特的树枝状结构,且具有较大比表面积和良好的介孔结构。同时,红外光谱(FT-IR)和X射线光电子能谱(XPS)结果证实,在空气条件下煅烧后,衍生物仍保留了N和C成分。此外,将制备的N掺杂树枝状双金属结构多孔材料作为光催化剂用于降解亚甲基蓝(MB)染料。结果表明:N掺杂TiO_(2)-Fe_(2)O_(3)/C比N掺杂非Fe参与的TiO_(2)/C和非N非Fe掺杂TiO_(2)/C具有更好的光催化性能,且N掺杂TiO_(2)-Fe_(2)O_(3)/C对MB染料的有效降解率达到81%。 展开更多
关键词 Ti基-MOFs fe基-MOFs TiO_(2)-fe_(2)O_(3)/c n掺杂 光催化
原文传递
A mesoporous Fe/N/CORR catalyst for polymer electrolyte membrane fuel cells 被引量:4
5
作者 石尉 王宇成 +3 位作者 陈驰 杨晓冬 周志有 孙世刚 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1103-1108,共6页
Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high ca... Fe/N/C is a promising non-platinum catalyst for the oxygen reduction reaction (ORR). Even so, mass transfer remains a challenge in the application of Fe/N/C to proton exchange membrane fuel cells, due to the high catalyst loadings required. In the present work, mesoporous Fe/N/C was syn- thesized through heat treatment of K]600 carbon black coated with poly-2-aminobenzimidazole and FeC13. The as-prepared Fe/N/C possesses a unique hollow-shell structure that contains a buffer zone allowing both water formation and vaporization, and also facilitates the mass transfer of gas- eous oxygen. This catalyst generated an oxygen reduction reaction activiW of 9.21 A/g in conjunc- tion with a peak power density of 0.71 W/cm2. 展开更多
关键词 fe/n/c catalystnon-platinum catalystOxygen reduction reactionMesoporeHollow-shell structure
在线阅读 下载PDF
Fluorescence detection of hydroxyl radical generated from oxygen reduction on Fe/N/C catalyst 被引量:7
6
作者 Li-Na Chen Wen-Song Yu +7 位作者 Tao Wang Xiao-Dong Yang Hui-Juan Yang Zhi-Xin Chen Tan Wang Na Tian Zhi-You Zhou Shi-Gang Sun 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第2期198-202,共5页
Pyrolyzed Fe/N/C catalyst has been considered as the most promising candidate to replace Pt for oxygen reduction reaction(ORR) in fuel cells.However,poor stability of Fe/N/C catalyst,mainly attributed to the oxidation... Pyrolyzed Fe/N/C catalyst has been considered as the most promising candidate to replace Pt for oxygen reduction reaction(ORR) in fuel cells.However,poor stability of Fe/N/C catalyst,mainly attributed to the oxidation corrosion by aggressive ·OH radical,severely hampers its applications.However,the exact mechanism for generation of ·OH is unclear yet.Herein,we developed a fluorescent method to effectively detect ·OH generated from ORR on Fe/N/C catalyst by using coumarin as a fluorescent probe.A great difference in potential dependence between ·OH and H2O2 generated from the ORR was observed,which suggests that ·OH is not generated from the decomposition of H2O2 as traditional viewpoint. 展开更多
关键词 oxygen reduction reaction fe/n/c catalysts RADIcAL cOUMARIn fluorescent probe
原文传递
Influence of different Fe doping strategies on modulating active sites and oxygen reduction reaction performance of Fe, N-doped carbonaceous catalysts 被引量:1
7
作者 Yang Liu Suqiong He +2 位作者 Bing Huang Ziyan Kong Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期511-520,I0013,共11页
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i... Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries. 展开更多
关键词 Mg-air battery Oxygen reduction reaction Single-atom fe/n/c catalysts fe doping strategies Zeolitic imidazole frameworks
在线阅读 下载PDF
Fe/N/C三维气凝胶自支撑催化剂的氧还原性能
8
作者 姚熙晨 王书贤 +2 位作者 汪云 王诚 张创 《无机化学学报》 北大核心 2025年第7期1387-1396,共10页
以过硫酸铵引发吡咯单体原位聚合形成的三维多孔气凝胶为载体,以二茂铁为金属前驱体,在氩气气氛下通过高温热解法制备出系列不同铁负载量的Fe/N/C催化剂。结果表明,基于气凝胶载体制备的催化剂在酸性介质中展现出优异的氧还原反应(ORR)... 以过硫酸铵引发吡咯单体原位聚合形成的三维多孔气凝胶为载体,以二茂铁为金属前驱体,在氩气气氛下通过高温热解法制备出系列不同铁负载量的Fe/N/C催化剂。结果表明,基于气凝胶载体制备的催化剂在酸性介质中展现出优异的氧还原反应(ORR)活性及稳定性。当二茂铁载量为12 mg时制得的催化剂性能最佳,其半波电位达0.691 V(vs RHE),平均电子转移数为3.97,表明反应过程接近理想的四电子路径。另外,该催化剂经10000圈循环伏安测试后,半波电位仅衰减11 mV,展现出较好的电化学耐久性。 展开更多
关键词 非贵金属催化剂 fe/n/c催化剂 气凝胶 氧还原反应 燃料电池
在线阅读 下载PDF
质子交换膜燃料电池Fe-N-C催化剂活性位点润湿性、黏附性及三相界面传质研究
9
作者 黄东 耿莉敏 吕强 《西安交通大学学报》 北大核心 2025年第10期148-159,共12页
为考察质子交换膜燃料电池非贵金属催化剂Fe-N-C构成的阴极催化层三相界面稳定性和传质性能,以沸石咪唑酯骨架结构材料(ZIF-8)为前驱体,引入氧化石墨烯,在800~1200℃温度范围内采用热合成方法制备了一系列Fe-N-C催化剂,通过电化学测试... 为考察质子交换膜燃料电池非贵金属催化剂Fe-N-C构成的阴极催化层三相界面稳定性和传质性能,以沸石咪唑酯骨架结构材料(ZIF-8)为前驱体,引入氧化石墨烯,在800~1200℃温度范围内采用热合成方法制备了一系列Fe-N-C催化剂,通过电化学测试和形貌表征,筛选出氧还原反应催化活性最佳的组别,并分析了其代表性活性位点Fe_(3)N。通过分子动力学模拟,探究了包含Fe_(3)N的阴极催化层三相界面内部传质过程以及决定该结构稳定性的活性位点表面润湿能力及其与离聚物间黏附性。研究结果表明:1000℃热解获得的Fe-N-C-1000催化剂具有最佳催化活性,其极限电流密度为5.18 mA/cm^(2),半波电位为0.86 mV,反应以4电子途径进行;Fe-N-C-1000继承了ZIF-8的十二面体结构,且存在大量孔径约3.9 nm的介孔,其代表性活性位点为Fe_(3)N;在298、358 K下,Fe_(3)N活性位点表面呈现良好亲水性,无论平整表面或纳米颗粒结构,Fe_(3)N和Nafion离聚物间的黏附性均强于Pt;在包含Fe_(3)N的三相界面中,H_(3)O+和O_(2)的扩散系数显著高于Pt/C催化剂三相界面;Fe_(3)N纳米颗粒对H_(3)O+和O_(2)也具有更强吸附能力。该研究结果可为Fe-N-C催化剂活性位点筛选和分子尺度性能评估提供参考。 展开更多
关键词 质子交换膜燃料电池 fe-n-c催化剂 氧还原反应 分子动力学模拟 三相界面 黏附性 扩散系数
在线阅读 下载PDF
硅烷偶联剂衍生Fe-N-C阴极电芬顿降解罗丹明B
10
作者 马家乐 周鹏飞 +1 位作者 陈帝好 严祥辉 《水处理技术》 北大核心 2025年第4期85-91,共7页
以硅烷偶联剂、三嵌段共聚物F127、邻氨基苯酚为主要前驱体,通过水热法结合热裂解、碱刻蚀合成了系列Fe-N-C材料,研究了F127平均分子量、Fe-N-C材料结构性质与其电催化氧还原反应(ORR)和在电芬顿(EF)系统降解罗丹明B(Rh B)性能间的合成... 以硅烷偶联剂、三嵌段共聚物F127、邻氨基苯酚为主要前驱体,通过水热法结合热裂解、碱刻蚀合成了系列Fe-N-C材料,研究了F127平均分子量、Fe-N-C材料结构性质与其电催化氧还原反应(ORR)和在电芬顿(EF)系统降解罗丹明B(Rh B)性能间的合成-结构-性能关系。结果表明,随着F127平均分子量的增加,制备的Fe-N-C微球的物相及碳结构几乎不受其影响,但总体上Fe-N-C微球分散度变高,颗粒尺寸变小,而其表面氮含量和比表面积都呈现出先增加再降低的趋势;其中利用中等平均分子量(Mn~2900)的F127获得的Fe-N-C材料(APD/o APF/F_(2)-Fe_(1.5)-HT2)兼具有较好的球形度、较高的石墨化程度、最高的氮含量和比表面积以及极低的晶态铁物种含量;相应地,APD/o APF/F_(2)-Fe_(1.5)-HT2以4e-反应途径催化ORR且展示出媲美商业Pt/C催化剂的活性;上述系列Fe-N-C微球作为阴极在EF中也能够实现对Rh B的有效降解,尤其APD/o APF/F_(2)-Fe_(1.5)-HT2在90 min降解Rh B的百分率达92.7%,且显示出良好的循环稳定性。 展开更多
关键词 硅烷偶联剂 三嵌段共聚物F127 fe-n-c催化剂 氧还原反应 电芬顿 罗丹明B
原文传递
Fe-N-C单原子催化剂电催化亚硝酸盐制氨
11
作者 王雪佳 杨级 +2 位作者 蒋远 董金超 李剑锋 《厦门大学学报(自然科学版)》 北大核心 2025年第1期128-136,共9页
[目的]为进一步拓展单原子催化剂在亚硝酸盐还原制氨领域的应用,提出了一种铁-氮-碳(Fe-N-C)单原子催化剂电催化亚硝酸盐还原制氨的新体系.[方法]以二氧化硅为硬模板,2,6-二氨基吡啶为碳氮前驱体,硝酸铁为金属盐,通过“热解-刻蚀”策略... [目的]为进一步拓展单原子催化剂在亚硝酸盐还原制氨领域的应用,提出了一种铁-氮-碳(Fe-N-C)单原子催化剂电催化亚硝酸盐还原制氨的新体系.[方法]以二氧化硅为硬模板,2,6-二氨基吡啶为碳氮前驱体,硝酸铁为金属盐,通过“热解-刻蚀”策略制备了Fe-N-C单原子催化剂,并将其应用于亚硝酸盐制氨反应.[结果]多种结构表征结果显示,Fe-N-C催化剂表面的Fe物种呈现高度分散特征并以单原子形式存在.此外,Fe物种的化学环境主要是+2和+3价混合态,且通过与4个吡啶氮配位而稳定存在,即Fe-N-C催化剂的金属中心微观配位环境为Fe-N4结构.与纯氮碳(N-C)载体相比,本研究制备的Fe-N-C催化剂具有优异的亚硝酸盐还原性能,不仅表现出更高的起始还原电位(0 V vs可逆氢电极),具有接近100%的产氨法拉第效率和高的氨产率[8.4 mg/(h·cm^(2))],并且在连续20次催化循环测试中显示出优异的催化稳定性.[结论]本研究制备的Fe-N-C单原子催化剂对亚硝酸盐还原制氨具有优异的电催化活性,其高活性可能来源于对NO_(2)^(-)的显著吸附,并进一步促进活性氢参与脱氧加氢过程.该Fe-N-C单原子催化亚硝酸盐还原体系可为后续合成氨的活性中心设计提供指导方向. 展开更多
关键词 fe-n-c单原子催化剂 电催化 亚硝酸盐还原 合成氨
在线阅读 下载PDF
High-yield pentanes-plus production via hydrogenation of carbon dioxide:Revealing new roles of zirconia as promoter of iron catalyst with long-term stability 被引量:1
12
作者 Sheraz Ahmed Junjung Rohmat Sugiarto +6 位作者 Wonjoong Yoon Muhammad Irshad Heuntae Jo Syeda Sidra Bibi Soek Ki Kim Muhammad Kashif Khan Jaehoon Kim 《Journal of Energy Chemistry》 2025年第3期431-442,共12页
The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly... The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly ZrO_(2),have rarely been investigated.To plug this knowledge gap,a new Fe catalyst promoted with Na and partially reduced ZrO_(x)(Na-FeZrO_(x-9))was developed in this study;the catalyst helped produce C_(5+)hydrocarbons in remarkably high yield(26.3%at 360℃).In contrast to ZrO_(x)-free Fe-oxide,NaFeZrO_(x)-9 exhibited long-term stability for CO_(2)hydrogenation(750 h on-stream).The findings revealed multiple roles of ZrO_(x).Notably,ZrO_(x)decorated the Fe-oxide particles after calcination,thereby suppressing excess particle aggregation during the reaction,and acted as a"coke remover"to eliminate the carbon deposited on the catalyst surface.Additionally,oxygen vacancy(O_(v))sites in ZrO_(x)and electron transfer from ZrO_(x)to Fe sites facilitated the adsorption of CO_(2)at the Zr-Fe interface. 展开更多
关键词 cO_(2)hydrogenation c5+hydrocarbons fe catalysts ZrO_(2)promoter Fischer Tropsch synthesis catalyst deactivation
在线阅读 下载PDF
Corrigendum to“Mechanistic Insights into Water-Mediated CO_(2)Electrochemical Reduction Reactions on Cu@C_(2)N Catalysts:A Theoretical Study”[Acta Physico-Chimica Sinica(2024)40,2303040]
13
《物理化学学报》 北大核心 2025年第5期144-144,共1页
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers... Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China. 展开更多
关键词 chemical engineeringdalian theoretical study water mediated cu c n catalysts fine chemicalsschool cO electrochemical reduction chemical engineeringstate
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
14
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base co−nc single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference 被引量:8
15
作者 Lina Wang Xin Wan +2 位作者 Shuangyu Liu Li Xu Jianglan Shui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期77-87,共11页
Proton exchange membrane fuel cells(PEMFC)have attracted much attention because of their high energy conversion efficiency,high power density and zero emission of pollutants.However,the high cost of the cathode platin... Proton exchange membrane fuel cells(PEMFC)have attracted much attention because of their high energy conversion efficiency,high power density and zero emission of pollutants.However,the high cost of the cathode platinum group metal(PGM)catalysts creates a barrier for the large-scale application of PEMFC.Tremendous efforts have been devoted to the development of low-cost PGM-free catalysts,especially the Fe-N-C catalysts,to replace the expensive PGM catalysts.However,the characterization methods and evaluation standards of the catalysts varies,which is not conducive to the comparison of PGM-free catalysts.U.S.Department of energy(DOE)is the only authority that specifies the testing standards and activity targets for PGM-free catalysts.In this review,the major breakthroughs of Fe-N-C catalysts are outlined with the reference of DOE standards and targets.The preparation and characteristics of these highly active Fe-N-C catalysts are briefly introduced.Moreover,the efforts on improving the mass transfer and the durability issue of Fe-N-C fuel cell are discussed.Finally,the prospective directions concerning the comprehensive evaluation of the Fe-N-C catalysts are proposed. 展开更多
关键词 PEMFc fe-n-c catalysts U.S.DOE Test standards Activity targets
在线阅读 下载PDF
Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst 被引量:4
16
作者 Liqin Gao Meiling Xiao +3 位作者 Zhao Jin Changpeng Liu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期17-23,I0002,共8页
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac... Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts. 展开更多
关键词 HIERARcHIcAL meso/micro-pore structure HYDROGEn ETcHInG Single site fe-n-c catalysts carbon-nitrogen-coordinated iron(fen4) Oxygen reduction reaction
在线阅读 下载PDF
Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors 被引量:7
17
作者 Ergui Luo Chen Wang +7 位作者 Yang Li Xian Wang Liyuan Gong Tuo Zhao Zhao Jin Junjie Ge Changpeng Liu Wei Xing 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2420-2426,共7页
Fe/N/C material is the most competitive alternative to precious-metal catalysts for oxygen reduction.In view of the present consensus on active centers,further effort is directed at maximizing the density of single Fe... Fe/N/C material is the most competitive alternative to precious-metal catalysts for oxygen reduction.In view of the present consensus on active centers,further effort is directed at maximizing the density of single Fe atoms.Here,the imperfections in commonly used doping strategy of Fe for the synthesis of zeolitic imidazolateframework(ZIF)-derived Fe/N/C catalysts are revealed.More importantly,a strikingly improved catalyst is obtained by a‘second pyrolysis’method and delivers a half-wave potential of 0.825 V(vs.RHE)in acidic media.The strong confinement effect of carbonaceous host accounts for the formation of dense single-atom sites and thus the high activity.Our findings will potentially facilitate future improvement of M/N/C catalysts. 展开更多
关键词 ELEcTROcATALYSIS fuel cells oxygen reduction fe/n/c single-atom catalysts
原文传递
Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells 被引量:3
18
作者 Ruguang Wang Yuanyuan Yang +4 位作者 Yang Zhao Liujing Yang Pengfei Yin Jing Mao Tao Ling 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期629-635,共7页
Atomically dispersed iron-nitrogen-carbon(Fe-N-C) catalysts have emerged as the most promising alternative to the expensive Pt-based catalysts for the oxygen reduction reaction(ORR) in proton exchange membrane fuel ce... Atomically dispersed iron-nitrogen-carbon(Fe-N-C) catalysts have emerged as the most promising alternative to the expensive Pt-based catalysts for the oxygen reduction reaction(ORR) in proton exchange membrane fuel cells(PEMFCs),however suffer from low site density of active Fe-N4 moiety and limited mass transport during the catalytic reaction.To address these challenges,we report a three-dimensional(3D) metal-organic frameworks(MOF)-derived Fe-N-C single-atom catalyst.In this well-designed Fe-N-C catalyst,the micro-scale interconnected skeleton,the nano-scale ordered pores and the atomic-scale abundant carbon edge defects inside the skeleton significantly enhance the site density of active Fe-N4 moiety,thus improving the Fe utilization in the final catalyst.Moreover,the combination of the above mentioned micro-and nano-scale structures greatly facilitates the mass transport in the 3D Fe-N-C catalyst.Therefore,the multiscale engineered Fe-N-C single-atom catalyst achieves excellent ORR performance under acidic condition and affords a significantly enhanced current density and power density in PEMFC.Our findings may open new opportunities for the rational design of FeN-C catalysts through multiscale structural engineering. 展开更多
关键词 fenc catalyst fe-n4 Proton exchange membrane fuel cells Oxygen reduction reaction Single-atom catalyst
在线阅读 下载PDF
Fe,N,S-doped porous carbon as oxygen reduction reaction catalyst in acidic medium with high activity and durability synthesized using CaCl_2 as template 被引量:3
19
作者 Chi Chen Zhiyou Zhou +4 位作者 Yucheng Wang Xue Zhang Xiaodong Yang Xinsheng Zhang Shigang Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第4期673-682,共10页
Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped p... Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications. 展开更多
关键词 non‐precious metal catalyst Oxygen reduction reaction Proton exchange membrane fuel cell fe n S‐doped porous carbon Melamine formaldehyde resin
在线阅读 下载PDF
Micro–meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance 被引量:2
20
作者 Fufang Chao Baoxing Wang +6 位作者 Jiaojiao Ren Yingwei Lu Wenrui Zhang Xizhang Wang Lin Cheng Yongbing Lou Jinxi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期212-219,I0008,共9页
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X... Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries. 展开更多
关键词 Micro–meso-macroporous feco-n-c Li-O2 battery cathode catalyst Oxygen evolution/reduction reaction
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部