Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,a...Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.展开更多
Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphou...Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).展开更多
FeSiAl-based soft magnetic composites(SMCs),prepared from insulated FeSiAl powders,are widely applied in electronic devices.However,it is still challenging to achieve high magnetic and mechanical properties simultaneo...FeSiAl-based soft magnetic composites(SMCs),prepared from insulated FeSiAl powders,are widely applied in electronic devices.However,it is still challenging to achieve high magnetic and mechanical properties simultaneously due to the undesirable insulation layer.Here,double Al_(2)O_(3) insulation layers are prepared for FeSiAl SMC.Atomic-scale characterizations reveal an in-situ epitaxial Al_(2)O_(3) layer at FeSiAl surface under the catalysis of NaAlO_(2),and an outer amorphous Al_(2)O_(3) layer by subsequent NaAlO2 hydrolysis.The above structure ensures effective insulation of FeSiAl powders and excellent magnetic properties of the FeSiAl/NaAlO2 SMC,with permeability of 101 and power loss of 128 mW/cm^(3)(50 mT,100 kHz)respectively.Moreover,in-situ Al_(2)O_(3)/amorphous Al_(2)O_(3) on FeSiAl matrix also leads to distinguished crush strength of 36.5 MPa for the core sample,which is ascribed to the enhanced adhesion at different interfaces as evidenced by similar local oxygen coordination and low strain distribution.This work provides a novel method to fabricate high-performance FeSiAl SMCs.展开更多
The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influen...The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.展开更多
Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of pro...Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.展开更多
Metal-ceramic composites combine the excellent properties of metals and ceramics,which have high strength,stability,and corrosion re-sistance.Al_(2)O_(3)/FeCo composites have been proven to be useful in ap-plications ...Metal-ceramic composites combine the excellent properties of metals and ceramics,which have high strength,stability,and corrosion re-sistance.Al_(2)O_(3)/FeCo composites have been proven to be useful in ap-plications such as catalysts,mi-crowave absorption materials,and enhanced permeability dielectric.The understanding of the mechani-cal properties and dynamics at the atomic scale of the Al_(2)O_(3)/FeCo in-terface can promote the design and exploitment of metal-ceramic composites.In this work,we have obtained Young’s modulus and diffusion coefficient of the Al_(2)O_(3)/FeCo interface using molecular dynamics simulation,elucidated the structural characteristics of the Al_(2)O_(3)/FeCo interface at the atomic scale,and investigated the impact of atomic magnetism and the exter-nal magnetic field on the interface.Simulated results show that Young’s modulus of the Al_(2)O_(3)/FeCo interface is significantly improved compared with pure Al_(2)O_(3)and FeCo alloy at room and high temperatures.When the atomic magnetism and the external magnetic field are applied,Young’s modulus of the Al_(2)O_(3)/FeCo interface further increases to 612 GPa at 300 K and 602 GPa at 500 K.Moreover,the average density,diffusion coefficient,and radial distri-bution function are found to be modified substantially.This study will shed light on the atom-istic investigations of the metal-ceramic composites.展开更多
The high-carbon ferrochrome is an essential raw material for producing stainless steel,and the demand of it increases with the increase of stainless steel.So increasing Cr recovery rate from chromite is essential for ...The high-carbon ferrochrome is an essential raw material for producing stainless steel,and the demand of it increases with the increase of stainless steel.So increasing Cr recovery rate from chromite is essential for lower costs and higher economic benefits in high-carbon ferrochrome production process.This study calculated the activity of CrO_(x)in slag and investigated the distribution behavior of Cr between slag and alloy.Theω(MgO)/ω(Al_(2)O_(3))was 1.0,and the w(CaO)/w(SiO_(2))was from 0.2 to 0.6 in this study.The calculation and experimental results showed that the main phases of the slag were chrome-containing spinel,magnesium-aluminum spinel,olivine and melilite.The content of spinel in slag decreased with the increasing w(CaO)/w(SiO_(2)),and the w(CrO_(x))in spinel also reduced,but the content of melilite increased.The distribution ratio of Cr between slag and alloy decreased with the increase of slag basicity at 1600℃,meansning that increasing the w(CaO)/w(SiO_(2))of slag can improve the recovery of Cr in chromite smelting process.展开更多
High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase co...High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.展开更多
利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色...利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色,其为Al_(2)O_(3)-Cr_(2)O_(3)固溶体、Mg Al_(2)O_(4)和Cr_(2)O_(3)三种物质的混合物。相较于Al_(2)O_(3)陶瓷,涂层表面晶粒和孔洞的尺寸均较小,其晶粒尺寸均匀性也有明显提升。高温烧结后,Al、Cr两种元素相互扩散,并且涂层中有少量从陶瓷基体迁移而来的玻璃相。高温烧结的Cr_(2)O_(3)涂层将Al_(2)O_(3)陶瓷的二次电子发射系数减小至3.22,将表面电阻率减小至4.52×10^(11)Ω,将真空沿面耐压强度增大至34.44 k V/cm,此值较Al_(2)O_(3)陶瓷提高了约108%。展开更多
基金supported by the National Natural Science Foundation of China (No. 52374292)China Baowu Low Carbon Metallurgy Innovation Foundation, China (No. BWLCF202309)the Natural Science Foundation of Changsha City, China (No. KQ2208271)。
文摘Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.
基金supported by the National Natural Science Foundation of China(22175136)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23127)the Fundamental Research Funds for the Central Universities(xtr052024009).
文摘Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).
基金supported by the National Science Fund for Distinguished Young Scholars(No.52225312)National Natu-ral Science Foundation of China(Nos.52271173,52377022,and U23A20548)+1 种基金Key Research and Development Program of Zhejiang Province(No.2021C01193)Zhejiang Provincial Natural Science Foundation of China(No.LY23E010007).
文摘FeSiAl-based soft magnetic composites(SMCs),prepared from insulated FeSiAl powders,are widely applied in electronic devices.However,it is still challenging to achieve high magnetic and mechanical properties simultaneously due to the undesirable insulation layer.Here,double Al_(2)O_(3) insulation layers are prepared for FeSiAl SMC.Atomic-scale characterizations reveal an in-situ epitaxial Al_(2)O_(3) layer at FeSiAl surface under the catalysis of NaAlO_(2),and an outer amorphous Al_(2)O_(3) layer by subsequent NaAlO2 hydrolysis.The above structure ensures effective insulation of FeSiAl powders and excellent magnetic properties of the FeSiAl/NaAlO2 SMC,with permeability of 101 and power loss of 128 mW/cm^(3)(50 mT,100 kHz)respectively.Moreover,in-situ Al_(2)O_(3)/amorphous Al_(2)O_(3) on FeSiAl matrix also leads to distinguished crush strength of 36.5 MPa for the core sample,which is ascribed to the enhanced adhesion at different interfaces as evidenced by similar local oxygen coordination and low strain distribution.This work provides a novel method to fabricate high-performance FeSiAl SMCs.
基金supported by the National Natural Science Foundation of China(22376063,21976057)the Fund of the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A05)Fundamental Research Funds for the Central Universities.
文摘The preferential oxidation of CO(CO-PROX)reaction is a cost-effective method for eliminating trace amounts of CO from the fuel H2.Pt-based catalysts have been extensively studied for COPROX,with their activity influenced by the morphology of the support.Hydrothermal synthesis was employed to produce different morphologies ofγ-Al_(2)O_(3):flower-likeγ-Al_(2)O_(3)(f)exposing(110)crystal faces,sheet-likeγ-Al_(2)O_(3)(s)revealing(100)crystal faces,and rod-likeγ-Al_(2)O_(3)(r)displaying(111)crystal faces,followed by loading PtCo nanoparticles.The exposed crystal faces of the support impact the alloying degree of the PtCo nanoparticles,and an increase in the alloying degree correlates with enhanced catalyst reactivity.Pt_(3)Co intermetallic compounds were identified onγ-Al_(2)O_(3)(f)exposing(110)crystal faces,and PtCo/γ-Al_(2)O_(3)(f)showed high catalytic activity in the CO-PROX reaction,achieving 100%CO conversion across a broad temperature range of 50−225°C.In contrast,only partial alloying of PtCo was observed onγ-Al_(2)O_(3)(s).Furthermore,no alloying between Pt and Co occurred in PtCo/γ-Al_(2)O_(3)(r),resulting in a reaction rate at 50°C that was merely 11%of that of PtCo/γ-Al_(2)O_(3)(f).The formation of Pt3Co intermetallic compounds led to a more oxidized state of Pt,which significantly diminished the adsorption of CO on Pt and augmented the active oxygen species,thereby facilitating the selective oxidation of CO.
文摘Propylene,a readily accessible and economically viable light olefin,has garnered substantial interest for its potential conversion into valuable higher olefins through oligomerization processes.The distribution of products is profoundly influenced by the catalyst structure.In this study,Fe_(2)O_(3)-doped NiSO_(4)/Al_(2)O_(3) catalysts have been meticulously developed to facilitate the selective trimerization of propylene under mild conditions.Significantly,the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst demonstrates an enhanced reaction rate(48.5 mmol_(C3)/(g_(cat).·h)),alongside a high yield of C9(~32.2%),significantly surpassing the performance of the NiSO_(4)/Al_(2)O_(3) catalyst(C9:~24.1%).The incorporation of Fe_(2)O_(3) modifies the migration process of sulfate ions,altering the Lewis acidity of the electron-deficient Ni and Fe sites on the catalyst and resulting a shift in product distribution from a Schulz-Flory distribution to a Poisson distribution.This shift is primarily ascribed to the heightened energy barrier for theβ-H elimination reaction in the C6 alkyl intermediates on the doped catalyst,further promoting polymerization to yield a greater quantity of Type II C9.Furthermore,the validation of the Cossee-Arlman mechanism within the reaction pathway has been confirmed.It is noteworthy that the 0.25Fe_(2)O_(3)-NiSO_(4)/Al_(2)O_(3) catalyst exhibits remarkable stability exceeding 80 h in the selective trimerization of propylene.These research findings significantly enhance our understanding of the mechanisms underlying olefin oligomerization reactions and provide invaluable insights for the development of more effective catalysts.
基金supported by the National Natural Science Foundation of China(Nos.22173057,52130204,12074241,11929401,12311530675)Science and Technology Commission of Shanghai Municipality(Nos.21JC1402700,22XD1400900,20501130600,21JC1402600)High-Performance Computing Center,Shanghai Technical Service Center of Science and Engineering Computing,Shanghai University。
文摘Metal-ceramic composites combine the excellent properties of metals and ceramics,which have high strength,stability,and corrosion re-sistance.Al_(2)O_(3)/FeCo composites have been proven to be useful in ap-plications such as catalysts,mi-crowave absorption materials,and enhanced permeability dielectric.The understanding of the mechani-cal properties and dynamics at the atomic scale of the Al_(2)O_(3)/FeCo in-terface can promote the design and exploitment of metal-ceramic composites.In this work,we have obtained Young’s modulus and diffusion coefficient of the Al_(2)O_(3)/FeCo interface using molecular dynamics simulation,elucidated the structural characteristics of the Al_(2)O_(3)/FeCo interface at the atomic scale,and investigated the impact of atomic magnetism and the exter-nal magnetic field on the interface.Simulated results show that Young’s modulus of the Al_(2)O_(3)/FeCo interface is significantly improved compared with pure Al_(2)O_(3)and FeCo alloy at room and high temperatures.When the atomic magnetism and the external magnetic field are applied,Young’s modulus of the Al_(2)O_(3)/FeCo interface further increases to 612 GPa at 300 K and 602 GPa at 500 K.Moreover,the average density,diffusion coefficient,and radial distri-bution function are found to be modified substantially.This study will shed light on the atom-istic investigations of the metal-ceramic composites.
基金Project(2023XQLH055)supported by Central South University Graduate Research Innovation Project(University-Enterprise Joint Project),China。
文摘The high-carbon ferrochrome is an essential raw material for producing stainless steel,and the demand of it increases with the increase of stainless steel.So increasing Cr recovery rate from chromite is essential for lower costs and higher economic benefits in high-carbon ferrochrome production process.This study calculated the activity of CrO_(x)in slag and investigated the distribution behavior of Cr between slag and alloy.Theω(MgO)/ω(Al_(2)O_(3))was 1.0,and the w(CaO)/w(SiO_(2))was from 0.2 to 0.6 in this study.The calculation and experimental results showed that the main phases of the slag were chrome-containing spinel,magnesium-aluminum spinel,olivine and melilite.The content of spinel in slag decreased with the increasing w(CaO)/w(SiO_(2)),and the w(CrO_(x))in spinel also reduced,but the content of melilite increased.The distribution ratio of Cr between slag and alloy decreased with the increase of slag basicity at 1600℃,meansning that increasing the w(CaO)/w(SiO_(2))of slag can improve the recovery of Cr in chromite smelting process.
文摘High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.
文摘利用浸涂法将Cr_(2)O_(3)涂覆于Al_(2)O_(3)陶瓷表面,通过高温烧结获得涂层陶瓷,并系统性地研究了Cr_(2)O_(3)涂层对样品的物质成分、微观形貌、二次电子发射系数、表面电阻率和真空沿面耐压性能的影响。结果表明:涂层陶瓷表面呈红黑色,其为Al_(2)O_(3)-Cr_(2)O_(3)固溶体、Mg Al_(2)O_(4)和Cr_(2)O_(3)三种物质的混合物。相较于Al_(2)O_(3)陶瓷,涂层表面晶粒和孔洞的尺寸均较小,其晶粒尺寸均匀性也有明显提升。高温烧结后,Al、Cr两种元素相互扩散,并且涂层中有少量从陶瓷基体迁移而来的玻璃相。高温烧结的Cr_(2)O_(3)涂层将Al_(2)O_(3)陶瓷的二次电子发射系数减小至3.22,将表面电阻率减小至4.52×10^(11)Ω,将真空沿面耐压强度增大至34.44 k V/cm,此值较Al_(2)O_(3)陶瓷提高了约108%。