In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of ...In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.展开更多
To improve the nitriding resistance of Zr_(2)Fe alloy,the Ce-added Zr_(2)(Fe_(1-x)Ni_(x))(x=0,0.15,0.3,0.5)alloys were prepared by magnetic levitation melting method.The effects of Ni substitution for Fe on the phase ...To improve the nitriding resistance of Zr_(2)Fe alloy,the Ce-added Zr_(2)(Fe_(1-x)Ni_(x))(x=0,0.15,0.3,0.5)alloys were prepared by magnetic levitation melting method.The effects of Ni substitution for Fe on the phase structure,hydrogen and nitrogen absorption properties of the alloys were investigated by X-ray diffraction,scanning electron microscopy and p-c isotherm measurements.The experimental results show that Ni substitution can effectively inhibit the formation of both α-Zr and ZrFe_(2) phases and promote the formation of C16 structure Zr_(2)(Fe,Ni)phase,causing Ni-substituted alloys to exhibit low nitrogen absorption rate and capacity.At 623 K under 0.5 MPa nitrogen pressure,the nitrogen absorption capacity of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy reaches to 0.8 mL/g,much lower than that of Zr_(2)Fe alloy(1.5 mL/g).Ni substitution decreases the crystal cell volume of the C_(16)Zr_(2)(Fe,Ni)phase,resulting in an increase in the hydrogen absorption equilibrium pressure.At 623 K under 0.05 MPa hydrogen pressure,the hydrogen absorption capacity decreases from 1.46 wt%of Zr_(2)Fe alloy to 1.41 wt%of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy.展开更多
基金supported by the National Natural Science Foundation of China (No.21206108)Tianjin Municipal Science and Technology Commission (No.14JCYBJC21200)
文摘In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.
基金the financial support from State Key Laboratory of Advanced Materials for Smart Sensing,GRINM Group Co.,Ltd.
文摘To improve the nitriding resistance of Zr_(2)Fe alloy,the Ce-added Zr_(2)(Fe_(1-x)Ni_(x))(x=0,0.15,0.3,0.5)alloys were prepared by magnetic levitation melting method.The effects of Ni substitution for Fe on the phase structure,hydrogen and nitrogen absorption properties of the alloys were investigated by X-ray diffraction,scanning electron microscopy and p-c isotherm measurements.The experimental results show that Ni substitution can effectively inhibit the formation of both α-Zr and ZrFe_(2) phases and promote the formation of C16 structure Zr_(2)(Fe,Ni)phase,causing Ni-substituted alloys to exhibit low nitrogen absorption rate and capacity.At 623 K under 0.5 MPa nitrogen pressure,the nitrogen absorption capacity of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy reaches to 0.8 mL/g,much lower than that of Zr_(2)Fe alloy(1.5 mL/g).Ni substitution decreases the crystal cell volume of the C_(16)Zr_(2)(Fe,Ni)phase,resulting in an increase in the hydrogen absorption equilibrium pressure.At 623 K under 0.05 MPa hydrogen pressure,the hydrogen absorption capacity decreases from 1.46 wt%of Zr_(2)Fe alloy to 1.41 wt%of Ce-added Zr_(2)(Fe_(0.5)Ni_(0.5))alloy.