The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the ...The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the Fe content during the liquid-phase oxidation of tetracycline, which showed an enhancement at the low Fe content. The XRD, Raman, XPS, and UV-Vis absorp- tion spectra indicated that the crystalline structure of the Ti/Fe complex particles changed from anatase phase to rutile phase when the Fe content increased. The isolated Fe203, Fe304, FeO species were observed and Fe3+ ions were highly dispersed in the TiO2 matrixes, then Ti-O-Fe species were formed. These species increased the surface defects of the Ti/Fe particles. Also, ac- tive hydroxyl radicals could be generated in the catalytic transformation, which led to the higher activity of the catalyst than bare Ti02 for the degradation of tetracycline.展开更多
In the present work,ferrite(Fe)doped TiO_(2)thin films with different volume percentage(vol%)were synthesized using a spray pyrolysis technique.The effect of Fe doping on structural properties such as crystallite size...In the present work,ferrite(Fe)doped TiO_(2)thin films with different volume percentage(vol%)were synthesized using a spray pyrolysis technique.The effect of Fe doping on structural properties such as crystallite size,texture coefficient,microstrain,dislocation densities etc.were evaluated from the X ray diffratometry(XRD)data.XRD data revealed a polycrystalline anatase TiO_(2)phase for sample synthesized up to 2 vol%and mixed anatase and rutile crystalline phase for sample synthesized at 4 vol%Fe doped TiO_(2).The crystalline size was observed to decrease with increase in Fe dopant vol%and also other structural parameters changes with Fe dopant percentage.In the present work,electrical resistance was observed to decrease with a rise in Fe dopant vol%and temperature of the sample.Thermal properties like temperature coefficient of resistance and activation energy also showed strong correlation with Fe dopant vol%.Humidity sensing properties of the synthesized sample altered with a change in Fe dopant vol%.In the present paper,maximum sensitivity of about 88.7%for the sample synthesized with 2 vol%Fe doped TiO_(2)and also the lowest response and recovery time of about 52 and 3 s were reported for the same sample.展开更多
An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and r...An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and recyclable ability in the ketalization of glycerol to Solketal with acetone at 318 K has been developed. Our study demonstrated that the structure of Fe (less agglomerated iron species vs. FeO clusters) can be tuned by changing Fe loading in the PKU-1 material, which correlated well with experimental observations. Furthermore, the surface boron sites were promoted by iron loading and behaved as Lewis-acid sites to facilitate the reaction process of glycerol ketalization, while the Solketal selectivity was closely related with the structure of iron species in PKU-1, which was proved by kinetic studies, density function theory (DFT) calculations, and a series of spectroscopy studies. This investigation demonstrates that the surface B sites can play important roles in the reaction instead of being spectators.展开更多
Fe-doped BiVO4with hierarchical flower-like structure was prepared via a hydrothermal method using sodium dodecylbenzene sulfonate(SDBS)as structure directing agent.X-ray diffraction(XRD),scanning electron microscope(...Fe-doped BiVO4with hierarchical flower-like structure was prepared via a hydrothermal method using sodium dodecylbenzene sulfonate(SDBS)as structure directing agent.X-ray diffraction(XRD),scanning electron microscope(SEM),transmissionelectron microscope(TEM),high resolution transmission electron microscope(HRTEM),X-ray photoelectron spectroscopy(XPS)and UV-Vis were applied for characterization of the as-prepared samples.The formation mechanism of flower-like structure wasproposed based on the evolution of morphology as a function of hydrothermal time.Fe-doped into substitutional sites of BiVO4effectively improved the migration and separation of photogenerated carrier and enhanced the utilization of visible light.Flower-likeFe-doped BiVO4showed much higher visible-light-driven photocatalytic efficiency for degradation of methyl blue compared withthe pristine BiVO4.And the sample with a Fe/Bi mole ratio of2.5%showed the highest photocatalytic efficiency.展开更多
Two-dimensional(2 D)few-layerVSe_(2),V_(1-x)Fe_(x)Se_(2) nanosheets have been synthesized by a hightemperature organic solution-phase method. The thickness of VSe_(2) nanosheets can be tuned from 12 to 5 layers by dec...Two-dimensional(2 D)few-layerVSe_(2),V_(1-x)Fe_(x)Se_(2) nanosheets have been synthesized by a hightemperature organic solution-phase method. The thickness of VSe_(2) nanosheets can be tuned from 12 to 5 layers by decreasing the precursor concentrations. The few-layer VSe_(2) nanosheets show the room-temperature ferromagnetism. The coercivity and magnetization reach 0.024 T and 0.036 mA·m^(2)·g^(-1) at room temperature. The chargedensity wave behavior is also confirmed in VSe_(2) by the hysteresis loops and zero-field-cooling curve. V_(1-x)Fe_(x)Se_(2) nanosheets can be obtained by doping Fe(acac)3 in the reaction process. The room-temperature coercivity and magnetization of V_(0.8)Fe_(0.2)Se_(2) nanosheets are 5 times higher than those of the pure VSe_(2) nanosheets without destroying the structures. The enhancement of magnetization is due to the coupling interaction of 3 d orbits between V and Fe atoms. Higher Fe concentration is beneficial to improve the coercivity, which is attributed to the formation of the second phase Fe3 Se4. This simple chemical preparation method can be extended to prepare the other 2 D materials.展开更多
Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity i...Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries.展开更多
Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The resu...Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The results show that during isothermal aging at 170℃,the average shear force of all solder joints decreases with increasing aging time,while the average fracture energy first increases and then decreases,reaching a maximum at 500 h.Minor Fe doping could both increase shear forces and related fracture energy,with the optimum Fe doping amount being 0.03 wt%within the entire aging range.This is because the doping Fe reduces the undercooling of the SAC305 alloy,resulting in the microstructure refining of solder joints.This in turn causes the microstructure changing from network structure(SAC305 joint:eutectic network+β-Sn)to a single matrix structure(0.03Fe-doped SAC305 joint:β-Sn matrix+small compound particles).Specifically,Fe atoms can replace some Cu in Cu_(6)Sn_(5)(both inside the solder joint and at the interface),and then form(Cu,Fe)_(6)Sn_(5) compounds,resulting in an increase in the elastic modulus and nanohardness of the compounds.Moreover,the growth of Cu_(6)Sn_(5) and Cu_(3)Sn intermetallic compounds(IMC)layer are inhibited by Fe doping even after the aging time prolonging,and Fe aggregates near the interface compound to form FeSn_(2).This study is of great significance for controlling the growth of interfacial compounds,stabilizing the microstructures,and providing strengthening strategy for solder joint alloy design.展开更多
Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped p...Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.展开更多
Metal-support interaction(MSI)is an efficient way in heterogeneous catalysis and electrocatalysis to modulate the electronic structure of metal for enhanced catalytic activity.However,there are still great challenges ...Metal-support interaction(MSI)is an efficient way in heterogeneous catalysis and electrocatalysis to modulate the electronic structure of metal for enhanced catalytic activity.However,there are still great challenges in promoting the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)simultaneously by this way.Herein,Fe-doped Co_(3)O_(4)supported Ru(Ru/FeCo)catalysts are synthesized by MSI strategies to further improve the electrocatalytic activity and stability of the catalysts.The results show that the optimized Ru/FeCo catalyst exhibits the best catalytic performance.The HER and OER tests at10 m A/cm^(2)in 1 mol/L KOH solution show excellent overpotentials of 155 m V and 283 m V,respectively.The activity and stability enhancement can be attributed to the MSI that effectively modify the electronic structure and improve interfacial electron transfer between Ru and Fe-doped Co_(3)O_(4)(FeCo).This work provides an innovative direction for the design of high-efficiency bifunctional electrocatalysts by virtue of the MSI.展开更多
YBa2Cu3O7-d (YBCO)-coated conductors havewide-ranging potential in large-scale applications such assuperconducting maglev trains and superconducting electriccables, but low current carrying capability restrains thep...YBa2Cu3O7-d (YBCO)-coated conductors havewide-ranging potential in large-scale applications such assuperconducting maglev trains and superconducting electriccables, but low current carrying capability restrains thepractical application of YBCO-coated conductors at hightemperatures and high magnetic fields. It is crucial todevelop YBCO-coated conductors with high critical currentdensity. In this paper, epitaxial, dense, smooth, andcrack-free Fe-doped YBCO films were prepared on aLaAlO3 single crystal substrate via a fluorine-free polymerassistedmetal organic deposition method. The effects ofthe dilute Fe doping on microstructure and superconductingcharacter of YBCO films were investigated. The criticaltemperature for superconducting of the Fe-dopedYBCO films decreases slightly. However, the in-fieldcritical current density of YBCO films improves with diluteFe doping of amounts less than x = 0.005, compared to thepure YBCO film. Therefore, the current carrying capabilityof YBCO film can improve by doping with appropriateamounts of Fe. This means that dilute Fe doping in YBCOfilms may be a feasible way to prepare high-performancecoated conductors.展开更多
The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phos...The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.展开更多
A novel Fe-doping three-dimensional fiower-like Bi_(7)O_(9)I_(3) microspheres with plasmonic Bi and rich surface oxygen vacancies(Fe-Bi/Bi_(7)O_(9)I_(3)/OVs)was prepared as catalysts,and further coupled with natural a...A novel Fe-doping three-dimensional fiower-like Bi_(7)O_(9)I_(3) microspheres with plasmonic Bi and rich surface oxygen vacancies(Fe-Bi/Bi_(7)O_(9)I_(3)/OVs)was prepared as catalysts,and further coupled with natural air diffusion electrode(NADE)to construct the heterogeneous visible-light-driven photoelectro-Fenton(HEVL-PEF)process to enhance the degradation and mineralization of tetracycline(TC).Interfacial≡Fe sites,OVs and Bi metal were simultaneously constructed via Fe doping,which effectively improved visible light absorption and the separation efficiency of photogenerated carriers to further accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ),achieving Fenton reaction recycling.HE-VL-PEF process could achieve enhanced treatment of pollutants,thanks to the synergistic effect of electro-Fenton(EF)and photo-Fenton(PF).NADE exhibited excellent H_(2)O_(2) electrosynthesis without external oxygen-pumping equipment.Under the irradiation of visible light,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve more photoelectrons to accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ)or directly activate H2O2.DFT calculations also clearly demonstrated that except for the fast charge separation and transfer,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve a faster electron transport between Fe-O,facilitating Fe site acquire more electron.Consequently,the Fe-Bi/Bi_(7)O_(9)I_(3)/OVs in HE-VL-PEF process presented performance superiorities including excellent pollutant removal(91.91%),low electric energy consumption of 66.34 k Wh/kg total organic carbon(TOC),excellent reusability and wide p H adaptability(3–9).展开更多
As a promising cathode material for aqueous zinc-ion batteries,1T-MoS_(2)has been extensively investigated because of its facile two-dimensional ion-diffusion channels and high electrical conductivity.However,the limi...As a promising cathode material for aqueous zinc-ion batteries,1T-MoS_(2)has been extensively investigated because of its facile two-dimensional ion-diffusion channels and high electrical conductivity.However,the limited number of available Zn storage sites,i.e.,limited capacity,hinders its application because the inserted Zn^(2+),which form strong electrostatic interactions with 1T-MoS_(2),preventing subsequent Zn^(2+)insertion.Currently,the approach of enlarging the interlayer distance to reduce electrostatic interactions has been commonly used to enhance the capacity and reduce Zn^(2+)migration barriers.However,an enlarged interlayer spacing can weaken the van der Waals force between 1T-MoS_(2)monolayers,easily disrupting the structural stability.Herein,to address this issue,an effective strategy based on Fe doping is proposed for 1T-MoS_(2)(Fe-1T-MoS_(2)).The theoretical calculations reveal that Fe doping can simultaneously moderate the rate of decrease in the adsorption energy after gradually increasing the number of stored atoms,and enhance the electron delocalization on metal-O bonds.Therefore,the experiment results show that Fe doping can simultaneously activate more Zn storage sites,thus enhancing the capacity,and stabilize the structural stability for improved cycling performance.Consequently,Fe-1T-MoS_(2)exhibits a larger capacity(189 mAh·g^(-1)at 0.1 A·g^(-1))and superior cycling stability(78%capacity retention after 400 cycles at 2 A·g^(-1))than pure 1T-MoS_(2).This work may open up a new avenue for constructing high-performance MoS_(2)-based cathodes.展开更多
CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hi...CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hindered by poor charge separation efficiency.Herein,we introduce a characteristic in-situ solution Fe-doping strategy that markedly improves photoelectrochemical performance of CBO,doubling the photocurrent density and achieving an unprecedented 190 mV anodic shift in the onset potential.By integrating with an electrochemical oxidation post-treatment,a record incident photon-to-current efficiency(IPCE)exceeding 40% at 0.6 V vs.RHE under visible light illumination is achieved.The versatility of the doping strategy is demonstrated across CBO photocathodes synthesized by different methods with various morphologies,grain sizes,and crystallinities.Mechanistic studies reveal that the gradient distribution of Fe^(3+)ions generates an internal electric field that facilitates efficient charge separation and increases acceptor density.The strong Fe-O bonding also enhances structural stability against photoinduced corrosion.Notably,our investigation uncovers the non-temperature-dependent nature of CBO photocurrent,indicating that PEC performance enhancement primarily depends on reducing carrier recombination rather than improving bulk conductivity.This work lays the groundwork for future advancements in water splitting performance of CBO photocathodes,offering a complementary strategy to conventional methods for enhancing charge separation efficiency.展开更多
The effect of Fe doping on the electrical properties of lanthanum silicates was investigated. The apatite-type lanthanum silicates La10Si6-xFexO27-x/2 (x=0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via sol-gel process...The effect of Fe doping on the electrical properties of lanthanum silicates was investigated. The apatite-type lanthanum silicates La10Si6-xFexO27-x/2 (x=0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via sol-gel process. The unit cell volume increased with Fe doping because the ionic radius of Fe3+ ion is larger than that of Si4+ ion. The conductivities of La10Si6-xFexO27 x/2 first increased and then decreased with the increasing of Fe content. The increase of the conductivity might be attributed to the distortion of the cell lattice, which assisted the migration of the interstitial oxygen ions. The decrease of the conductivity might be caused by the lower concentration of interstitial oxygen ions. The optimum Fe doping content in lanthanum silicates was 0.6. La10Si5.4Fe0.6O26.7 exhibited the highest ionic conductivity of 2.712× 10^-2 S/cm at 800 ℃. The dependence of conductivity on oxygen partial pressure p(O2) suggested that the conductivity of La10Si6-xFexO27-x/2 was mainly contributed by ionic conductivity.展开更多
Fe doped In2O3 samples (In1-xFex)2O3 (x=0, 0.05, 0.1, 0.2 and 0.3) on glass substrate were prepared by sol-gel method. The XRD results demonstrate that the solubility of Fe ions in In2O3 matrix is around 20%, abov...Fe doped In2O3 samples (In1-xFex)2O3 (x=0, 0.05, 0.1, 0.2 and 0.3) on glass substrate were prepared by sol-gel method. The XRD results demonstrate that the solubility of Fe ions in In2O3 matrix is around 20%, above which impurity phase can be observed. The transmittance of the samples with x=0, 0.05, 0.1 and 0.2 are above 80% in the visible region while the transimittance of the glass is 90%. The transmittance curves slightly red-shifts as x increasing. All of the samples except x=0 are ferromagnetic at room temperature. The highest saturation magnetization moment is reached in the sample x=0.2 with 330 emu/cm3, and the coercive force is 169 Oe which is also the largest in our samples. The results indicate that the addition of Fe ions could tune the structure, the ferromagnetism and optical property in the In2O3 matrix.展开更多
Electrocatalytic N2 reduction to ammonia is a fascinating alternative to Haber-Bosch process and also considered as an energy sto rage method.This work,Fe doped MoS2/carbon cloth(CC) has been studied on the electro-ca...Electrocatalytic N2 reduction to ammonia is a fascinating alternative to Haber-Bosch process and also considered as an energy sto rage method.This work,Fe doped MoS2/carbon cloth(CC) has been studied on the electro-catalysis fix nitrogen indicating the doped Fe can indeed enhance the MoS2 material ability.Compared with MoS2/CC,Fe-Mo-S-3/CC not only increases 10 times in the rate of production ammonia,but also 5 times in Faraday efficiency.展开更多
Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg_(3)Al_(1-x)Fe_(x),containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the s...Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg_(3)Al_(1-x)Fe_(x),containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg_(3)Al)to 1(Ir/Mg_(3)Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg_(3)Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg_(3)Al_(1–x)Fex support to the dispersed Ir particles and the surface geometry.展开更多
Visible light-driven environmentally friendly ZnO semiconductor for durable photocatalytic disinfection and purification of drinking water is very promising.However,the high requirement in ultraviolet absorption and r...Visible light-driven environmentally friendly ZnO semiconductor for durable photocatalytic disinfection and purification of drinking water is very promising.However,the high requirement in ultraviolet absorption and rapid recombination velocity of the photogenerated electron-hole severely hamper the sustainable implementation of ZnO in photocatalysis.Herein,by one"two birds with one stone"strategy,Fe-doping ZnO porous nanosheets(Fe-ZnOPN)composed of ultrafine nanoparticles can be constructed by hydrothermal synthesis of basic zinc carbonate and controlled low-temperature pyrolytic methods.By highly concentrated Fe-doping effect(>7 wt%),the tailoring ZnO nanograin size(~10 nm)and rich oxygen vacancy of catalyst were accessed by ion/vacancy diffusion and nanocrystal rearrangement,superior to the ZnO porous nanosheets(~37 nm).The obtained Fe-ZnOPN were endowed with a larger specific surface area,improved visible light harvesting ability,light response and separation of charge carriers.Such characters allowed the resulting catalyst to afford a 100%bactericidal efficiency against Pseudomonas aeruginosa and Staphylococcus aureus under visible light irradiation(>420 nm).Impressively,the Fe-ZnOPN could show practical disinfection ability in different water resources and multiple reuse ability.The mechanism study revealed that excellent photocatalytic disinfection performance of Fe-ZnOPN correlated with the in situ generated active oxidative substances,destruction of bacterial biofilm and resulting nucleic acids leakage,thereby causing irreversible physical damage.This study provided a new reference for designing environmentally friendly photocatalytic sterilization materials and disinfectants,which can be used in the practical disinfection of drinking water.展开更多
The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, v...The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.展开更多
基金Shanghai Education Committee Science Development Foundation.
文摘The particles of titanium-iron (Ti/Fe) complex with different Fe contents were prepared by means of the sol-gel method and used as a photocatalyst. The activity of the catalyst was investi- gated as a function of the Fe content during the liquid-phase oxidation of tetracycline, which showed an enhancement at the low Fe content. The XRD, Raman, XPS, and UV-Vis absorp- tion spectra indicated that the crystalline structure of the Ti/Fe complex particles changed from anatase phase to rutile phase when the Fe content increased. The isolated Fe203, Fe304, FeO species were observed and Fe3+ ions were highly dispersed in the TiO2 matrixes, then Ti-O-Fe species were formed. These species increased the surface defects of the Ti/Fe particles. Also, ac- tive hydroxyl radicals could be generated in the catalytic transformation, which led to the higher activity of the catalyst than bare Ti02 for the degradation of tetracycline.
文摘In the present work,ferrite(Fe)doped TiO_(2)thin films with different volume percentage(vol%)were synthesized using a spray pyrolysis technique.The effect of Fe doping on structural properties such as crystallite size,texture coefficient,microstrain,dislocation densities etc.were evaluated from the X ray diffratometry(XRD)data.XRD data revealed a polycrystalline anatase TiO_(2)phase for sample synthesized up to 2 vol%and mixed anatase and rutile crystalline phase for sample synthesized at 4 vol%Fe doped TiO_(2).The crystalline size was observed to decrease with increase in Fe dopant vol%and also other structural parameters changes with Fe dopant percentage.In the present work,electrical resistance was observed to decrease with a rise in Fe dopant vol%and temperature of the sample.Thermal properties like temperature coefficient of resistance and activation energy also showed strong correlation with Fe dopant vol%.Humidity sensing properties of the synthesized sample altered with a change in Fe dopant vol%.In the present paper,maximum sensitivity of about 88.7%for the sample synthesized with 2 vol%Fe doped TiO_(2)and also the lowest response and recovery time of about 52 and 3 s were reported for the same sample.
基金financially supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos. KJQN202000823 and KJZD-K201900802)Research project of Chongqing Technology and Business University(No. 1956058)+2 种基金Scientific Platform ProjectMinistry of Education (No. fykf201905)US Department of Energy Office of Basic Energy Sciences,Division of Chemical,Biological and Geological Sciences (No. DE-FG02-86ER13622.A000) for support of this research。
文摘An inexpensive Fe doped aluminoborate consisted of 18% Fe in PKU-1 material that exhibits high selectivity of 4-hydroxymethy-2,2-dimethyl^(-1),3-dioxolane (Solketal, 98.3%), considerable activity (TOF 51.7 h-1), and recyclable ability in the ketalization of glycerol to Solketal with acetone at 318 K has been developed. Our study demonstrated that the structure of Fe (less agglomerated iron species vs. FeO clusters) can be tuned by changing Fe loading in the PKU-1 material, which correlated well with experimental observations. Furthermore, the surface boron sites were promoted by iron loading and behaved as Lewis-acid sites to facilitate the reaction process of glycerol ketalization, while the Solketal selectivity was closely related with the structure of iron species in PKU-1, which was proved by kinetic studies, density function theory (DFT) calculations, and a series of spectroscopy studies. This investigation demonstrates that the surface B sites can play important roles in the reaction instead of being spectators.
基金Project(51102025)supported by the National Natural Science Foundation of ChinaProject(14JJ7040)supported by Natural Science Foundation of Hunan Province,ChinaProject(2014GH561172)supported by China Torch Program
文摘Fe-doped BiVO4with hierarchical flower-like structure was prepared via a hydrothermal method using sodium dodecylbenzene sulfonate(SDBS)as structure directing agent.X-ray diffraction(XRD),scanning electron microscope(SEM),transmissionelectron microscope(TEM),high resolution transmission electron microscope(HRTEM),X-ray photoelectron spectroscopy(XPS)and UV-Vis were applied for characterization of the as-prepared samples.The formation mechanism of flower-like structure wasproposed based on the evolution of morphology as a function of hydrothermal time.Fe-doped into substitutional sites of BiVO4effectively improved the migration and separation of photogenerated carrier and enhanced the utilization of visible light.Flower-likeFe-doped BiVO4showed much higher visible-light-driven photocatalytic efficiency for degradation of methyl blue compared withthe pristine BiVO4.And the sample with a Fe/Bi mole ratio of2.5%showed the highest photocatalytic efficiency.
基金financially supported by the National Natural Science Foundation of China(Nos.51971122,51571135 and 51701106)the National Key R&D Program of China(No.2017YFB0405703)。
文摘Two-dimensional(2 D)few-layerVSe_(2),V_(1-x)Fe_(x)Se_(2) nanosheets have been synthesized by a hightemperature organic solution-phase method. The thickness of VSe_(2) nanosheets can be tuned from 12 to 5 layers by decreasing the precursor concentrations. The few-layer VSe_(2) nanosheets show the room-temperature ferromagnetism. The coercivity and magnetization reach 0.024 T and 0.036 mA·m^(2)·g^(-1) at room temperature. The chargedensity wave behavior is also confirmed in VSe_(2) by the hysteresis loops and zero-field-cooling curve. V_(1-x)Fe_(x)Se_(2) nanosheets can be obtained by doping Fe(acac)3 in the reaction process. The room-temperature coercivity and magnetization of V_(0.8)Fe_(0.2)Se_(2) nanosheets are 5 times higher than those of the pure VSe_(2) nanosheets without destroying the structures. The enhancement of magnetization is due to the coupling interaction of 3 d orbits between V and Fe atoms. Higher Fe concentration is beneficial to improve the coercivity, which is attributed to the formation of the second phase Fe3 Se4. This simple chemical preparation method can be extended to prepare the other 2 D materials.
基金supported by the National Natural Science Foundation of China(22171266)the FJIRSM&IUE Joint Research Fund(RHZX-2019-002)+2 种基金the STS Project(KFJ-STS-QYZD-2021-09002)the National Key Basic Research Program of China(2017YFA0403402)the Project of the National Natural Science Foundation of China(U1932119)。
文摘Fe/N/C catalysts,synthesized through the pyrolysis of Fe-doped metal–organic framework (MOF) precursors,have attracted extensive attention owing to their promising oxygen reduction reaction (ORR) catalytic activity in fuel cells and/or metal-air batteries.However,post-treatments (acid washing,second pyrolysis,and so on) are unavoidable to improve ORR catalytic activity and stability.The method for introducing Fe^(3+) sources (anhydrous Fe Cl_(3)) into the MOF structure,in particular,is a critical step that can avoid time-consuming post-treatments and result in more exposed Fe-N_(x) active sites.Herein,three different Fe doping strategies were systematically investigated to explore their influence on the types of active sites formed and ORR performance.Fe-NC(Zn^(2+)),synthesized by one-step pyrolysis of Fe doped ZIF-8 (Zn^(2+)) precursor which was obtained by adding the anhydrous Fe Cl_(3)source into the Zn(NO_(3))_(2)·6H_(2)O/methanol solution before mixing,possessed the highest Fe-N_(x)active sites due to the high-efficiency substitution of Zn^(2+)ions with Fe^(3+) ions during ZIF-8 growth,the strong interaction between Fe^(3+) ions and N atoms of 2-Methylimidazole (2-MIm),and ZIF-8’s micropore confinement effect.As a result,Fe-NC(Zn^(2+)) presented high ORR activity in the entire p H range (p H=1,7,and 13).At p H=13,Fe-NC(Zn^(2+)) exhibited a half-wave potential (E1/2) of 0.95 V (vs.reversible hydrogen electrode),which was 70 m V higher than that of commercial Pt/C.More importantly,Fe-NC(Zn^(2+)) showed superior ORR stability in neutral media without performance loss after 5,000 cycles.A record-high open-circuit voltage(1.9 V) was obtained when Fe-NC(Zn^(2+)) was used as a cathodic catalyst in assembled Mg-air batteries in neutral media.The assembled liquid and all-solid Mg-air batteries with high performance indicated that Fe-NC(Zn^(2+)) has enormous potential for use in flexible and wearable Mg-air batteries.
基金supported by the Yunnan Fundamental Research Projects(No.202301BC070001-001)funded by the Yunnan Provincial Department of Science and Technologythe Yunnan Provincial Science and Technology Plan Project(No.202005AF150045)+1 种基金the Jiangsu Province Industry-University-Research Cooperation Project(No.BY2022832)funded by the Jiangsu Provincial Department of Science and Technologythe National Natural Science Foundation of China(No.52275339).
文摘Different amounts of Fe(0.005,0.01,0.03,0.05,and 0.07 wt%)were added to SAC305 to study the shear behavior damage of Fe-doped SAC solder joints under thermal loading(170℃,holding time of 0,250,500,and 750 h).The results show that during isothermal aging at 170℃,the average shear force of all solder joints decreases with increasing aging time,while the average fracture energy first increases and then decreases,reaching a maximum at 500 h.Minor Fe doping could both increase shear forces and related fracture energy,with the optimum Fe doping amount being 0.03 wt%within the entire aging range.This is because the doping Fe reduces the undercooling of the SAC305 alloy,resulting in the microstructure refining of solder joints.This in turn causes the microstructure changing from network structure(SAC305 joint:eutectic network+β-Sn)to a single matrix structure(0.03Fe-doped SAC305 joint:β-Sn matrix+small compound particles).Specifically,Fe atoms can replace some Cu in Cu_(6)Sn_(5)(both inside the solder joint and at the interface),and then form(Cu,Fe)_(6)Sn_(5) compounds,resulting in an increase in the elastic modulus and nanohardness of the compounds.Moreover,the growth of Cu_(6)Sn_(5) and Cu_(3)Sn intermetallic compounds(IMC)layer are inhibited by Fe doping even after the aging time prolonging,and Fe aggregates near the interface compound to form FeSn_(2).This study is of great significance for controlling the growth of interfacial compounds,stabilizing the microstructures,and providing strengthening strategy for solder joint alloy design.
基金supported by the National Basic Research Program of China (973 Program,2015CB932303)the National Natural Science Founda-tion of China (21373175,21621091)~~
文摘Proton exchange membrane fuel cells suffer from the sluggish kinetics of the oxygen reduction reaction(ORR)and the high cost of Pt catalysts.In the present work,a high‐performance ORR catalystbased on Fe,N,S‐doped porous carbon(FeNS‐PC)was synthesized using melamine formaldehyderesin as C and N precursors,Fe(SCN)3as Fe and S precursors,and CaCl2as a template via a two‐stepheat treatment without a harsh template removal step.The results show that the catalyst treated at900℃(FeNS‐PC‐900)had a high surface area of775m2/g,a high mass activity of10.2A/g in anacidic medium,and excellent durability;the half‐wave potential decreased by only20mV after10000potential cycles.The FeNS‐PC‐900catalyst was used as the cathode in a proton exchangemembrane fuel cell and delivered a peak power density of0.49W/cm2.FeNS‐PC‐900therefore hasgood potential for use in practical applications.
基金the financial support provided by the National Natural Science Foundation of China(Nos.52161145403,22072164,51932005)Liaoning Revitalization Talents Program(No.XLYC1807175)the Research Fund of Shenyang National Laboratory for Materials Science。
文摘Metal-support interaction(MSI)is an efficient way in heterogeneous catalysis and electrocatalysis to modulate the electronic structure of metal for enhanced catalytic activity.However,there are still great challenges in promoting the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)simultaneously by this way.Herein,Fe-doped Co_(3)O_(4)supported Ru(Ru/FeCo)catalysts are synthesized by MSI strategies to further improve the electrocatalytic activity and stability of the catalysts.The results show that the optimized Ru/FeCo catalyst exhibits the best catalytic performance.The HER and OER tests at10 m A/cm^(2)in 1 mol/L KOH solution show excellent overpotentials of 155 m V and 283 m V,respectively.The activity and stability enhancement can be attributed to the MSI that effectively modify the electronic structure and improve interfacial electron transfer between Ru and Fe-doped Co_(3)O_(4)(FeCo).This work provides an innovative direction for the design of high-efficiency bifunctional electrocatalysts by virtue of the MSI.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (200806131034, 200806130023)Natural Science Foundation of China under Contract Nos. 50672078 and 50872116+6 种基金the National Science Fund for Distinguished Young Scholars under Contract No. 50588201, and 51102199the National High-Tech Program of China (863 Program) under Contract No. 2007AA03Z203the PCSIRT of the Ministry of Education of China (IRT0751)Research and Development Foundation of Southwest Jiao tong University under Grant Contract No. 2004A02Fundamental Research Funds for the Central Universities (SWJTU12CX019)the National Natural Science Foundation (51202202)Fundamental Research Funds for the Central Universities of China (SWJTU2682013CX005)
文摘YBa2Cu3O7-d (YBCO)-coated conductors havewide-ranging potential in large-scale applications such assuperconducting maglev trains and superconducting electriccables, but low current carrying capability restrains thepractical application of YBCO-coated conductors at hightemperatures and high magnetic fields. It is crucial todevelop YBCO-coated conductors with high critical currentdensity. In this paper, epitaxial, dense, smooth, andcrack-free Fe-doped YBCO films were prepared on aLaAlO3 single crystal substrate via a fluorine-free polymerassistedmetal organic deposition method. The effects ofthe dilute Fe doping on microstructure and superconductingcharacter of YBCO films were investigated. The criticaltemperature for superconducting of the Fe-dopedYBCO films decreases slightly. However, the in-fieldcritical current density of YBCO films improves with diluteFe doping of amounts less than x = 0.005, compared to thepure YBCO film. Therefore, the current carrying capabilityof YBCO film can improve by doping with appropriateamounts of Fe. This means that dilute Fe doping in YBCOfilms may be a feasible way to prepare high-performancecoated conductors.
基金financially supported by Shenzhen Bureau of Science,Technology and Innovation Commission(No.JSGG20200914113601003)the National Natural Science Foundation of China(No.51971080)。
文摘The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.
基金financially supported by Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)National Key R&D Program International Cooperation Project(No.2021YFE0106500)+3 种基金Natural Science Foundation of China(No.52170085)Fundamental Research Funds for the Central UniversitiesNankai UniversityNational Research Foundation IRGChina/South Africa Research Cooperation Programme(No.132793)。
文摘A novel Fe-doping three-dimensional fiower-like Bi_(7)O_(9)I_(3) microspheres with plasmonic Bi and rich surface oxygen vacancies(Fe-Bi/Bi_(7)O_(9)I_(3)/OVs)was prepared as catalysts,and further coupled with natural air diffusion electrode(NADE)to construct the heterogeneous visible-light-driven photoelectro-Fenton(HEVL-PEF)process to enhance the degradation and mineralization of tetracycline(TC).Interfacial≡Fe sites,OVs and Bi metal were simultaneously constructed via Fe doping,which effectively improved visible light absorption and the separation efficiency of photogenerated carriers to further accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ),achieving Fenton reaction recycling.HE-VL-PEF process could achieve enhanced treatment of pollutants,thanks to the synergistic effect of electro-Fenton(EF)and photo-Fenton(PF).NADE exhibited excellent H_(2)O_(2) electrosynthesis without external oxygen-pumping equipment.Under the irradiation of visible light,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve more photoelectrons to accelerate the transformation of Fe(Ⅲ)to Fe(Ⅱ)or directly activate H2O2.DFT calculations also clearly demonstrated that except for the fast charge separation and transfer,Fe-Bi/Bi_(7)O_(9)I_(3)/OVs could achieve a faster electron transport between Fe-O,facilitating Fe site acquire more electron.Consequently,the Fe-Bi/Bi_(7)O_(9)I_(3)/OVs in HE-VL-PEF process presented performance superiorities including excellent pollutant removal(91.91%),low electric energy consumption of 66.34 k Wh/kg total organic carbon(TOC),excellent reusability and wide p H adaptability(3–9).
基金supported by the National Natural Science Foundation of China(No.52102318)the Fellowship of China Postdoctoral Science Foundation(Nos.2021TQ0287 and 2022M722855)Xingdian Talent Support Foundation of Yunnan Province(2020).
文摘As a promising cathode material for aqueous zinc-ion batteries,1T-MoS_(2)has been extensively investigated because of its facile two-dimensional ion-diffusion channels and high electrical conductivity.However,the limited number of available Zn storage sites,i.e.,limited capacity,hinders its application because the inserted Zn^(2+),which form strong electrostatic interactions with 1T-MoS_(2),preventing subsequent Zn^(2+)insertion.Currently,the approach of enlarging the interlayer distance to reduce electrostatic interactions has been commonly used to enhance the capacity and reduce Zn^(2+)migration barriers.However,an enlarged interlayer spacing can weaken the van der Waals force between 1T-MoS_(2)monolayers,easily disrupting the structural stability.Herein,to address this issue,an effective strategy based on Fe doping is proposed for 1T-MoS_(2)(Fe-1T-MoS_(2)).The theoretical calculations reveal that Fe doping can simultaneously moderate the rate of decrease in the adsorption energy after gradually increasing the number of stored atoms,and enhance the electron delocalization on metal-O bonds.Therefore,the experiment results show that Fe doping can simultaneously activate more Zn storage sites,thus enhancing the capacity,and stabilize the structural stability for improved cycling performance.Consequently,Fe-1T-MoS_(2)exhibits a larger capacity(189 mAh·g^(-1)at 0.1 A·g^(-1))and superior cycling stability(78%capacity retention after 400 cycles at 2 A·g^(-1))than pure 1T-MoS_(2).This work may open up a new avenue for constructing high-performance MoS_(2)-based cathodes.
基金financial support by the National Natural Science Foundation of China(NSFC,Grant No.22379153 and 22109128)the Ningbo Key Research and Development Project(2023Z147)the Ningbo 3315 Program。
文摘CuBi_(2)O_(4)(CBO)photocathodes hold significant promise for efficient photoelectrochemical(PEC)water splitting due to their favorable band gap and theoretical onset potential.However,their practical application is hindered by poor charge separation efficiency.Herein,we introduce a characteristic in-situ solution Fe-doping strategy that markedly improves photoelectrochemical performance of CBO,doubling the photocurrent density and achieving an unprecedented 190 mV anodic shift in the onset potential.By integrating with an electrochemical oxidation post-treatment,a record incident photon-to-current efficiency(IPCE)exceeding 40% at 0.6 V vs.RHE under visible light illumination is achieved.The versatility of the doping strategy is demonstrated across CBO photocathodes synthesized by different methods with various morphologies,grain sizes,and crystallinities.Mechanistic studies reveal that the gradient distribution of Fe^(3+)ions generates an internal electric field that facilitates efficient charge separation and increases acceptor density.The strong Fe-O bonding also enhances structural stability against photoinduced corrosion.Notably,our investigation uncovers the non-temperature-dependent nature of CBO photocurrent,indicating that PEC performance enhancement primarily depends on reducing carrier recombination rather than improving bulk conductivity.This work lays the groundwork for future advancements in water splitting performance of CBO photocathodes,offering a complementary strategy to conventional methods for enhancing charge separation efficiency.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The effect of Fe doping on the electrical properties of lanthanum silicates was investigated. The apatite-type lanthanum silicates La10Si6-xFexO27-x/2 (x=0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via sol-gel process. The unit cell volume increased with Fe doping because the ionic radius of Fe3+ ion is larger than that of Si4+ ion. The conductivities of La10Si6-xFexO27 x/2 first increased and then decreased with the increasing of Fe content. The increase of the conductivity might be attributed to the distortion of the cell lattice, which assisted the migration of the interstitial oxygen ions. The decrease of the conductivity might be caused by the lower concentration of interstitial oxygen ions. The optimum Fe doping content in lanthanum silicates was 0.6. La10Si5.4Fe0.6O26.7 exhibited the highest ionic conductivity of 2.712× 10^-2 S/cm at 800 ℃. The dependence of conductivity on oxygen partial pressure p(O2) suggested that the conductivity of La10Si6-xFexO27-x/2 was mainly contributed by ionic conductivity.
基金Funded by the Program for New Century Excellent Talents in University (NCET-05-0659)
文摘Fe doped In2O3 samples (In1-xFex)2O3 (x=0, 0.05, 0.1, 0.2 and 0.3) on glass substrate were prepared by sol-gel method. The XRD results demonstrate that the solubility of Fe ions in In2O3 matrix is around 20%, above which impurity phase can be observed. The transmittance of the samples with x=0, 0.05, 0.1 and 0.2 are above 80% in the visible region while the transimittance of the glass is 90%. The transmittance curves slightly red-shifts as x increasing. All of the samples except x=0 are ferromagnetic at room temperature. The highest saturation magnetization moment is reached in the sample x=0.2 with 330 emu/cm3, and the coercive force is 169 Oe which is also the largest in our samples. The results indicate that the addition of Fe ions could tune the structure, the ferromagnetism and optical property in the In2O3 matrix.
基金supported by Science and Technology Commission of Shanghai Municipality(Nos.17ZR1441200,18QA1402400 and 18230743400)National Natural Science Foundation of China(Nos.21771124,21901156)。
文摘Electrocatalytic N2 reduction to ammonia is a fascinating alternative to Haber-Bosch process and also considered as an energy sto rage method.This work,Fe doped MoS2/carbon cloth(CC) has been studied on the electro-catalysis fix nitrogen indicating the doped Fe can indeed enhance the MoS2 material ability.Compared with MoS2/CC,Fe-Mo-S-3/CC not only increases 10 times in the rate of production ammonia,but also 5 times in Faraday efficiency.
文摘Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg_(3)Al_(1-x)Fe_(x),containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg_(3)Al)to 1(Ir/Mg_(3)Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg_(3)Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg_(3)Al_(1–x)Fex support to the dispersed Ir particles and the surface geometry.
基金financially supported by the National Natural Science Foundation of China(No.21908085)the Natural Science Foundation of Jiangsu Province+7 种基金China(No.BK20190961)the National Natural Science Foundation(No.42207474)the Natural Science Foundation of Jiangsu Province(No.BK20210895)the Science and Technology Project of Suzhou(No.SKJY2021138)the Science and Education Revitalizing Youth Project of Suzhou(No.KJXW2020049)Suzhou Hospital Association Infection Management Special Research(No.SZSYYXH-2023-ZY1)Suzhou Municipal Health Commission Expert Team Introduction Project(No.SZYJTD201904)Jiangsu Provincial Key Laboratory of Environmental Science and Engineering(No.JSHJZDSYS-202103)。
文摘Visible light-driven environmentally friendly ZnO semiconductor for durable photocatalytic disinfection and purification of drinking water is very promising.However,the high requirement in ultraviolet absorption and rapid recombination velocity of the photogenerated electron-hole severely hamper the sustainable implementation of ZnO in photocatalysis.Herein,by one"two birds with one stone"strategy,Fe-doping ZnO porous nanosheets(Fe-ZnOPN)composed of ultrafine nanoparticles can be constructed by hydrothermal synthesis of basic zinc carbonate and controlled low-temperature pyrolytic methods.By highly concentrated Fe-doping effect(>7 wt%),the tailoring ZnO nanograin size(~10 nm)and rich oxygen vacancy of catalyst were accessed by ion/vacancy diffusion and nanocrystal rearrangement,superior to the ZnO porous nanosheets(~37 nm).The obtained Fe-ZnOPN were endowed with a larger specific surface area,improved visible light harvesting ability,light response and separation of charge carriers.Such characters allowed the resulting catalyst to afford a 100%bactericidal efficiency against Pseudomonas aeruginosa and Staphylococcus aureus under visible light irradiation(>420 nm).Impressively,the Fe-ZnOPN could show practical disinfection ability in different water resources and multiple reuse ability.The mechanism study revealed that excellent photocatalytic disinfection performance of Fe-ZnOPN correlated with the in situ generated active oxidative substances,destruction of bacterial biofilm and resulting nucleic acids leakage,thereby causing irreversible physical damage.This study provided a new reference for designing environmentally friendly photocatalytic sterilization materials and disinfectants,which can be used in the practical disinfection of drinking water.
基金supported by Higher Education Commission of Pakistan, National Basic Research Program of China (2010CB934602)National Science Foundation of China (51171007 and 51271009)
文摘The modification of nanostructured materials is of great interest due to controllable and unusual inherent properties in such materials. Single phase Fe doped Zn O nanostructures have been fabricated through simple, versatile and quick low temperature solution route with reproducible results. The amount of Fe dopant is found to play a significant role for the growth of crystal dimension. The effect of changes in the morphology can be obviously observed in the structural and micro-structural investigations, which may be due to a driving force induced by dipole-dipole interaction. The band gap of Zn O nanostructures is highly shifted towards the visible range with increase of Fe contents, while ferromagnetic properties have been significantly improved.The prepared nanostructures have been found to be nontoxic to SH-SY5 Y Cells. The present study clearly indicates that the Fe doping provides an effective way of tailoring the crystal dimension, optical band-gap and ferromagnetic properties of Zn O nanostructure-materials with nontoxic nature, which make them potential for visible light activated photocatalyst to overcome environmental pollution, fabricate spintronics devices and biosafe drug delivery agent.