With the rapid development of economy,the consumption of fossil fuels and excessive emissions of carbon dioxide(CO_(2))have led to many environmental issues.The thermocatalytic conversion of CO_(2) to high value‐adde...With the rapid development of economy,the consumption of fossil fuels and excessive emissions of carbon dioxide(CO_(2))have led to many environmental issues.The thermocatalytic conversion of CO_(2) to high value‐added chemicals is an effective strategy to meet the need of carbon neutralization.Among them,CO_(2) hydrogenation to light olefins has been well researched so that the selectivity of desired products can exceed the Anderson–Schulz–Flory(ASF)distribution to acquire an extremely high yield.However,although huge progress has been made in CO_(2) hydrogenation to produce long‐chainα‐olefins based on Fe catalysts as well,designing efficient catalysts with promoted C‐O dissociation and C‐C coupling remains challenging.In addition,ASF distribution restrains the selectivity of desired long‐chain products,whereas the approaches to breaking it still face issues.In this review,we focus on the design of Fe‐based catalysts for the synthesis of long‐chainα‐olefins through CO_(2) hydrogenation.We have summarized and analyzed the reaction mechanism,design of catalysts,structure–activity relationship,interaction between Fe and promoters,and strategies to break the ASF distribution.At the same time,the issues faced by CO_(2) hydrogenation to long‐chainα‐olefins are proposed and the possible future solutions are prospected.This review aims to provide a recent development on the design of Fe‐based catalysts for CO_(2) hydrogenation to long‐chainα‐olefins while considering the ASF distribution.展开更多
基金supported by the CNPC Innovation Found(2021DQ02‐0702).
文摘With the rapid development of economy,the consumption of fossil fuels and excessive emissions of carbon dioxide(CO_(2))have led to many environmental issues.The thermocatalytic conversion of CO_(2) to high value‐added chemicals is an effective strategy to meet the need of carbon neutralization.Among them,CO_(2) hydrogenation to light olefins has been well researched so that the selectivity of desired products can exceed the Anderson–Schulz–Flory(ASF)distribution to acquire an extremely high yield.However,although huge progress has been made in CO_(2) hydrogenation to produce long‐chainα‐olefins based on Fe catalysts as well,designing efficient catalysts with promoted C‐O dissociation and C‐C coupling remains challenging.In addition,ASF distribution restrains the selectivity of desired long‐chain products,whereas the approaches to breaking it still face issues.In this review,we focus on the design of Fe‐based catalysts for the synthesis of long‐chainα‐olefins through CO_(2) hydrogenation.We have summarized and analyzed the reaction mechanism,design of catalysts,structure–activity relationship,interaction between Fe and promoters,and strategies to break the ASF distribution.At the same time,the issues faced by CO_(2) hydrogenation to long‐chainα‐olefins are proposed and the possible future solutions are prospected.This review aims to provide a recent development on the design of Fe‐based catalysts for CO_(2) hydrogenation to long‐chainα‐olefins while considering the ASF distribution.