期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fe_3O_4@UiO-66-NH_2 core–shell nanohybrid as stable heterogeneous catalyst for Knoevenagel condensation 被引量:8
1
作者 张艳梅 戴田霖 +3 位作者 张帆 张静 储刚 权春善 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2106-2113,共8页
separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed b... separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated. 展开更多
关键词 Metal-organic framework UiO-66-NH2 fe3O4 Heterogeneous catalyst Knoevenagel condensation Magnetic separation
在线阅读 下载PDF
Surface magnetization of siderite mineral 被引量:5
2
作者 Wu Xiqing Xu Pengyun +2 位作者 Duan Yunfeng Hu Cong Li Guoping 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期816-821,共6页
Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-cont... Surface self-magnetization of siderite is achieved by generating ferromagnetic substance on the surface of siderite by adjusting slurry temperature,pH value,stirring rate and reaction time.No addition of any iron-containing reagent is required.The temperature of 60 ℃,NaOH concentration of 0.10 mol/L;stirring rate of 900 r/min and the reaction time of 10 min are the optimal conditions.The results show that the siderite recovery in magnetic separation increased from 26.9% to 88.8% after surface magnetization.Magnetization kinetic equation is expressed as 1 [1(e0.269)]1/3 = Kt.Activation energy for the magnetization reaction is 4.30 kJ/mol.VSM,SEM and XPS were used to characterize the siderite,and results show that the saturated magnetization(rs) of siderite increased from 0.652 to 2.569Am2 /kg,the magnetic hysteresis was detected with a coercive force of 0.976 A/m after magnetization;Fe2P3/2 electron binding energy changed which reflects the valence alteration in iron on the surface and the formation of ferromagnetic Fe3O4. 展开更多
关键词 Iron ores Magnetic separation Surface magnetization Air oxidation fe3O4 chemical synthesis
在线阅读 下载PDF
Synthesis of novel magnetic sulfur-doped Fe_3O_4 nanoparticles for efficient removal of Pb(Ⅱ) 被引量:1
3
作者 Xueqiong Huang Long Kong +2 位作者 Shouqiang Huang Min Liu Liang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第2期164-171,共8页
In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. Th... In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe_3O_4:S NPs exhibit a much better adsorption performance towards Pb(Ⅱ) than bare Fe_3O_4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(Ⅱ) by Fe_3O_4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis,and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(Ⅱ) adsorption. Thus, Fe_3O_4:S NPs are supposed to be a good adsorbents for Pb(Ⅱ) ions in environmental remediation. 展开更多
关键词 sulfur-doped fe3O4 nanoparticles Pb(Ⅱ) adsorption magnetic separation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部