Multi-walled carbon nanotubes were fabricated by chemical vapor deposition with acetylene as carbon source and titanate modified palygorskite as catalyst at high temperature. A part of as grown nanotubes was partially...Multi-walled carbon nanotubes were fabricated by chemical vapor deposition with acetylene as carbon source and titanate modified palygorskite as catalyst at high temperature. A part of as grown nanotubes was partially filled with foreign material in the shape of nanowire by transmission electron microscopy (TEM) observations. The encapsulated nanowires was single crystalline iron carbide upon selected area electron diffraction(SAED)patterns and X ray energy dispersive spectrum (EDS) results. Thermal gravimetric analyses (TGA) on the as grown samples indicated that the yield of carbon nanotubes was largest at 750℃ and the content of amorphous carbon decreased with increasing temperature. Furthermore, the growth mechanism was discussed on the experimental results in the paper.展开更多
Uniform Fe3 C/N-doped carbon nanofibers were successfully synthesized through a facile self-catalyzed CVD method by using acetylene as carbon source and Fe3O4 as iron source and autocatalytic template for the reaction...Uniform Fe3 C/N-doped carbon nanofibers were successfully synthesized through a facile self-catalyzed CVD method by using acetylene as carbon source and Fe3O4 as iron source and autocatalytic template for the reaction under moderate preparation conditions. The experimental and theoretical calculation results demonstrate that Fe3 C can improve the lithium storage performance of carbon nanofibers. Besides, the addition of PPy can not only control the growth rate of carbon fibers but also help to form uniform carbon fibers. As a result, the obtained Fe3 C/N-doped carbon nanofiber composites display favorable electrochemical performance as an anode for lithium-ion batteries, which including satisfactory rate performance of 402 m A h g-1 under 1.2 Ag-1, and good cycling stability of 502.3 m A h g-1 under 200 m Ag-1 over 400 cycles. The introduction of Fe3 C species and the uniform carbon fiber morphology are responsible for the long-cycling and high rate performance of materials.展开更多
We proposed a new way to synthesize a nanocomposite consisted of cementite Fe3C nanoparticles and amorphous carbon by radio frequency plasma-enhanced chemical vapor deposition. Transmission electron microscope images ...We proposed a new way to synthesize a nanocomposite consisted of cementite Fe3C nanoparticles and amorphous carbon by radio frequency plasma-enhanced chemical vapor deposition. Transmission electron microscope images show the existence of nanometric dark grains(Fe3C) embedded in a light matrix(amorphous carbon) in the samples. X-ray photoelectron spectroscopy experiment exhibit that the chemical bonding state in the films corresponded to sp3/sp2 amorphous carbon, sp^3 C-N(287.3 eV) and C15 in Fe3C(283.5 eV). With increasing deposition time, the ratio of amorphous carbon increased. The magnetic measurements show that the value of in-lane coercivity increased with increasing carbon matrix concentration(from about 6.56× 10^3 A/m for film without carbon structures to approximately 2.77× 10^4 and 5.81 × 10^4 AJm for nanocomposite films at room temperature and 10 K, respectively). The values of saturation magnetization for the synthesized nanocomposites were lower than that of the bulk Fe3C ( 140 Am^2/kg).展开更多
Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still car...Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.展开更多
文摘Multi-walled carbon nanotubes were fabricated by chemical vapor deposition with acetylene as carbon source and titanate modified palygorskite as catalyst at high temperature. A part of as grown nanotubes was partially filled with foreign material in the shape of nanowire by transmission electron microscopy (TEM) observations. The encapsulated nanowires was single crystalline iron carbide upon selected area electron diffraction(SAED)patterns and X ray energy dispersive spectrum (EDS) results. Thermal gravimetric analyses (TGA) on the as grown samples indicated that the yield of carbon nanotubes was largest at 750℃ and the content of amorphous carbon decreased with increasing temperature. Furthermore, the growth mechanism was discussed on the experimental results in the paper.
基金This research is supported by the National Natural Science Foundation of China(Grant Nos.51772092,51972109 and 51804116)the Natural Science Foundation ofHunanProvince,China(Grant No.2019JJ50205)+1 种基金the Scientific Research Foundation of Hunan Provincial Education Department,China(Grant Nos.18A315,18B347 and 18B346)the Hunan Provincial Innovation Foundation for Postgraduate(Grant No.CX2018B773).
文摘Uniform Fe3 C/N-doped carbon nanofibers were successfully synthesized through a facile self-catalyzed CVD method by using acetylene as carbon source and Fe3O4 as iron source and autocatalytic template for the reaction under moderate preparation conditions. The experimental and theoretical calculation results demonstrate that Fe3 C can improve the lithium storage performance of carbon nanofibers. Besides, the addition of PPy can not only control the growth rate of carbon fibers but also help to form uniform carbon fibers. As a result, the obtained Fe3 C/N-doped carbon nanofiber composites display favorable electrochemical performance as an anode for lithium-ion batteries, which including satisfactory rate performance of 402 m A h g-1 under 1.2 Ag-1, and good cycling stability of 502.3 m A h g-1 under 200 m Ag-1 over 400 cycles. The introduction of Fe3 C species and the uniform carbon fiber morphology are responsible for the long-cycling and high rate performance of materials.
基金Supported by the National Natural Science Foundation of China(No.50832001)the Science and Technology Develop-ment Program of Jilin Province, China(No.20070501)
文摘We proposed a new way to synthesize a nanocomposite consisted of cementite Fe3C nanoparticles and amorphous carbon by radio frequency plasma-enhanced chemical vapor deposition. Transmission electron microscope images show the existence of nanometric dark grains(Fe3C) embedded in a light matrix(amorphous carbon) in the samples. X-ray photoelectron spectroscopy experiment exhibit that the chemical bonding state in the films corresponded to sp3/sp2 amorphous carbon, sp^3 C-N(287.3 eV) and C15 in Fe3C(283.5 eV). With increasing deposition time, the ratio of amorphous carbon increased. The magnetic measurements show that the value of in-lane coercivity increased with increasing carbon matrix concentration(from about 6.56× 10^3 A/m for film without carbon structures to approximately 2.77× 10^4 and 5.81 × 10^4 AJm for nanocomposite films at room temperature and 10 K, respectively). The values of saturation magnetization for the synthesized nanocomposites were lower than that of the bulk Fe3C ( 140 Am^2/kg).
基金supported by the National Natural Science Foundation of China (U1303291)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘Fe-based carbon materials are widely considered promising to replace Pt/C as next-generation electrocatalysts towards oxygen reduction reaction (ORR). However, the preparation of Fe-based carbon materials is still carried out by conventional heating method (CHM). Herein, a novel microwave-assisted carbon bath method (MW-CBM) was proposed, which only took 35 min to synthesize Fe/Fe3C nanoparticles encapsulated in N-doped carbon layers derived from Prussian blue (PB). The catalyst contained large specific surface area and mesoporous structure, abundant Fe-Nx and C–N active sites, unique core-shell structure. Due to the synergistic effects of these features, the as-prepared Fe/Fe3C@NC-2 displayed outstanding ORR activity with onset potential of 0.98 VRHE and halfwave potential of 0.87 VRHE, which were more positive than 20 wt.% Pt/C (0.93 VRHE and 0.82 VRHE). Besides, Fe/Fe3C@NC-2 gave a better stability and methanol tolerance than Pt/C towards ORR in alkaline media, too.