During strike-slip fault dislocation,multiple fault planes are commonly observed.The resulting permanent ground deformation can lead to profound structural damage to tunnels.However,existing analytical models do not c...During strike-slip fault dislocation,multiple fault planes are commonly observed.The resulting permanent ground deformation can lead to profound structural damage to tunnels.However,existing analytical models do not consider multiple fault planes.Instead,they concentrate the entire fault displacement onto a single fault plane for analysis,thereby giving rise to notable errors in the calculated results.To address this issue,a refined nonlinear theoretical model was established to analyze the mechanical responses of the tunnels subjected to multiple strike-slip fault dislocations.The analytical model considers the number of fault planes,nonlinear soil‒tunnel interactions,geometric nonlinearity,and fault zone width,leading to a significant improvement in its range of applicability and calculation accuracy.The results of the analytical model are in agreement,both qualitatively and quantitatively,with the model test and numerical results.Then,based on the proposed theoretical model,a sensitivity analysis of parameters was conducted,focusing on the variables such as the number of fault planes,fault plane distance(d),fault displacement ratio(η),burial depth(C),crossing angle(β),tunnel diameter(D),fault zone width(Wf),and strike-slip fault displacement(Δfs).The results show that the peak shear force(Vmax),bending moment(Mmax),and axial force(Nmax)decrease with increasing d.The Vmax of the tunnel is found at the fault plane with the largest fault displacement.C,D,andΔfs contribute to the increases in Vmax,Mmax,and Nmax.Additionally,increasing the number of fault planes reduces Vmax and Mmax,whereas the variation in Nmax remains minimal.展开更多
A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)wit...A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)with an opening in the horizontal direction located in the isotropic layer is derived in the integral form by employing Airy’s stress function approach for the plane strain case.The linear combination of exponential terms appearing in the denominator of the integral expressions of the deformation field of the EIL is expressed as a finite sum of exponential terms(FSET)by applying the method of least squares to analytically compute the deformation field.The displacement field is discussed in detail and computed numerically by considering the EOHS as olivine or barytes material or considering half-space to be isotropic.展开更多
Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This p...Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This phenomenon has a significant impact on water flow patterns and basin extents,serving as an indicator of the landscape's response to active tectonic forces.One of the key drivers of divide migration is asymmetric uplift,which causes divides to shift from areas of lower uplift to regions experiencing higher uplift.Drainage divides are inherently dynamic,evolving over time as drainage networks develop and adjust to changing conditions.This study focuses on the migration of the main drainage divide along Karιncalιda?,located between Bozdo?an and Karacasu.It employs geomorphic analyses using metrics such as the normalized steepness index(ksn),Chi(χ),and Gilbert metrics.The main divide is categorized into four segments(D1–D4),with the Karacasu Fault,situated along the mountain's north-eastern boundary,identified as the primary factor influencing divide dynamics.Secondary factors include the relatively low elevation of Karιncalιda?,uniform lithology,and consistent rainfall patterns across the region.The results indicate that the main divide is currently stable,suggesting a balance between uplift and erosion.However,higherχvalues in the D4 segment suggest that future erosion may dominate,potentially causing the divide to migrate toward the Bozdo?an Basin.These findings highlight the dynamic nature of drainage divides and the complex interplay of tectonic,erosional,and lithological processes that shape their evolution.Continued monitoring and advanced geomorphic analysis are essential for understanding the long-term stability of the divide and its response to future tectonic activity and erosional modifications.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region...This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.展开更多
Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot...Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.展开更多
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method....Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated.展开更多
We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred duri...We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred during the Early Pleistocene, evidenced by eastward thrusting of Mesozoic carbonates on the Pliocene lacustrine deposits along the Minjiang upstream fault zone and by development of the transpressional ridges of basement rocks along the Anninghe river valley. The Middle Pleistocene seems to be a relaxant stage with local development of the intra-mountain basins particularly prominent along the Minjiang Upstream and along the southern segment of the Anninghe River Valley. This relaxation may have been duo to a local collapse of the thickened crust attained during the late Neogene to early Pleistocene across this marginal zone. Fault kinematics has been changed since the late Pleistocene, and was predominated by reverse sinistral strike-slip along the Minshan Uplift, reverse dextral strike-slip on the Longmenshan fault zone and pure sinistral strike-slip on the Anninghe fault. This change in fault kinematics during the Quaternary allows a better understanding of the mechanism by which the marginal ranges of the plateau has been built through episodic activities.展开更多
Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground defo...Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.展开更多
This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results sho...This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results show that a lot of normal faulting type earthquakes concentrate in the central Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of the normal faulting earthquakes are almost in the N-S direction based on the analyses of the equal area projection diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extension is probably an eastward extensional motion, mainly a tectonic active regime in the altitudes of the plateau. The tensional stress in the E-W or WNW-ESE direction predominates the earthquake occurrence in the normal event region of the central plateau. A number of thrust fault and strike-slip fault type earthquakes with strong compressive stress nearly in the NNE-SSW direction occurred on the edges of the plateau. The eastward extensional motion in the Tibetan plateau is attributable to the eastward movement of materials in the upper mantle based on_seismo-tomographic results. The eastward extensional motion in the Tibetan plateau may be related to the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. The northward motion of the Tibetan plateau shortened in the N-S direction probably encounters strong obstructions at the western and northern margins. Extensional motions from the relaxation of the topography and/or gravitational collapse in the altitudes of the plateau occur hardly in the N-S direction. The obstruction for the plateau to move eastward is rather weak.展开更多
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre...For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.展开更多
The Neogene Terror Rift in the Antarctic Victoria Land Basin(VLB)of the Ross Sea,Antarctica,is composed of the Discovery Graben and the Lee Arch.Many Neogene volcanoes are aligned in the north-south direction in the s...The Neogene Terror Rift in the Antarctic Victoria Land Basin(VLB)of the Ross Sea,Antarctica,is composed of the Discovery Graben and the Lee Arch.Many Neogene volcanoes are aligned in the north-south direction in the southern VLB,belonging to the McMurdo Volcanic Group.However,due to multiple glaciations and limited seismic data,the volcanic processes are still unclear in the northern VLB,especially in the Terror Rift.Multichannel seismic profiles were collected at the VLB from the 32nd Chinese National Antarctic Research Expedition(CHINARE).We utilized four seismic profiles from the CHINARE and additional historical profiles,along with gravity and magnetic anomalies,to analyze faults and stratigraphic characteristics in the northern Terror Rift and volcanism in the VLB.Negative flower structures found in the northern Terror Rift suggest that the Terror Rift was affected by dextral strike-slip faults extending from the northern Victoria Land(NVL).After the initial orthogonal tension,the rift transited into an oblique extension,forming a set of downward concaving normal faults and accommodation zones in the Terror Rift.On the Lee Arch,several imbricated normal faults formed and converged into a detachment fault.Under gravitational forces,the strata bent upward and formed a rollover anticline.Many deep faults and thin strata subjected to erosion facilitated volcanic activity.A brittle volcanic region in the VLB was affected by dextral strike-slip movements and east-west extension,resulting in two Neogene volcanic chains that connect three igneous provinces in the VLB:the Hallett,Melbourne,and Erebus Provinces.These two chains contain mud volcanoes with magnetic nuclei,volcanic intrusions,and late-stage volcanic eruptions.Volcanisms have brought about opposite polarities of magnetic anomalies in Antarctica,indicating the occurrence of multiple volcanic activities.展开更多
To unveil formation mechanism of key sequence boundaries of inland faulting basin and coal accumulation charac- teristics of coal seams in isochrohal stratigraphic framework, sequence stratigraphy, palaeogeographic re...To unveil formation mechanism of key sequence boundaries of inland faulting basin and coal accumulation charac- teristics of coal seams in isochrohal stratigraphic framework, sequence stratigraphy, palaeogeographic recovery and other methods were used to research the sequence stratigraphy and coal accumulation in the example of Banding Basn in the west margin of Yangtze Platform, and the authors advanced a coal accumulation model of Faulting basin on the basis of accommo- dation space changes in the background of palaeogeography of sequence framework. The results show that: normal lacustrine regression and forced lacustrine regression are the main driving forces for the formation of sequence boundaries of Faulting ba- sin; basement subsidence is the main source of accommodation space of Faulting basin; and subsidence disequilibrium is the main cause for the difference in generation rate of accommodation space of Faulting basin. Coal accumulation in Faulting basin is obviously controlled by accommodation space changes in sequence framework and basin evolution. As Faulting basin evolves into depression basin, both subsidence rate of basin basement and generation rate of accommodation space decrease vertically, it appears as a progradational reverse-graded sedimentary sequence, coal accumulation in secondary sequence framework intensifies first and then weakens, and coal accumulation at the middle stage of highstand system tract is the best. During steady rifting period, minable coal seams were mostly developed in initial lacustrine flooding surface of fourth-order sequence and at the middle-late period of highstand system tract, and coal accumulation center lay in palaeogeographic unit of delta plain with moderate available accommodation space. During shrinking period, minable coal seams gradually migrated to the maximum lacustrine flooding surface and coal accumulation center lay in palaeographical unit of lacustrine with large available accommodation space.展开更多
Fault is a complex dynamic system controlled by the coupling of rock texture, reaction, fluid flow,stress, and rock deformation mechanism. A coupled reaction-transport- mechanical dynamic model for fault system is est...Fault is a complex dynamic system controlled by the coupling of rock texture, reaction, fluid flow,stress, and rock deformation mechanism. A coupled reaction-transport- mechanical dynamic model for fault system is established and described in this paper. An example is presented for the Shuikoushan deposit, Hunan. The results of dynamic simulation indicate that the evolution and magnitude of fracture permeability of different rocks are different, and that faulting can enhance the spatial heterogeneity of rock permeability and facilitate fluid flow and mineralization in local fault zone. The pressure for a fault usually shows a variation mode of aperiodic oscillation with time, which reflects the chaotic behavior of the evolution of a fault.展开更多
Jiali fault is one of the major faults in southeastern Tibetan plateau. From Naqu to Jiali along which the field investigation has been done, the fault roughly extends in N60W direction and consists of three segments ...Jiali fault is one of the major faults in southeastern Tibetan plateau. From Naqu to Jiali along which the field investigation has been done, the fault roughly extends in N60W direction and consists of three segments arranged in en echelon. From Luoermano to Esukongma (about 40km) where the fault is the northern boundary of the Sangdi basin that extend north\|south, late Quaternary surface ruptures have been found. Within this segment the creeks and gullies that cross the fault were offset and the displacements range from several meters to about 5km. The average slip rate during late Quaternary is about 10mm/a for this segment. An interesting phenomena is that the large displacement can only be found at those places where the fault is related to the basins that extend north\|south. Outside the basins, no convincing evidence has been found for late Quaternary surface ruptures and average slip rate for the whole fault is only about 3mm/a middle Pleistocene. It seems that these strike\|slip faults behave like a transform fault and the strike\|slip motion along them were a consequence of east\|west extension that creates the north\|south graben systems rather than the vice versa.展开更多
The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges wit...The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges with the Jinhe belt on the north, the Qianhe belt on the south and the Ninglang belt on the west. Within the Yanyuan thrust belt are sedimentary cover rocks of the Yangtze platform, with ages ranging from Sinian to Triassic. In the north, the thrust sheet is overlain by the Muli thrust sheet along the Jinhe belt, while in the south, it is underlain by the Kangdian paleoland along the Qianhe belt. The youngest rocks on the foot wall are late Eocene to Oligocene in age, indicating that the thrusting occurred in the late Tertiary. The top of the Yanyuan thrust belt is truncated by a flat erosion surface similar to that on the plateau to the north. Along a north\|dipping normal fault bordering the Yanyuan basin on the south, the erosion surface is tilted to the south against Triassic rocks. The basin is filled with coal\|bearing clastic sediments of Pliocene and early Pleistocene age, which gives the timing of the normal faulting. Based on the faulting pattern, we propose that the southeastern edge of the Tibetan plateau underwent a large amount of N\|S shortening and uplift along the Yanyuan thrust sheet in the late Tertiary, while the subsequent normal faulting that had occurred along the Yanyuan basin during the Pliocene and Pliocene can be interpreted to have accommodated gravitational collapse of the crust.展开更多
Houston,Texas,is one of the earliest regions to employ continuous GPS technology for land subsidence monitoring.Currently,there are over 200 permanent GPS stations located in the greater Houston area.The need for a co...Houston,Texas,is one of the earliest regions to employ continuous GPS technology for land subsidence monitoring.Currently,there are over 200 permanent GPS stations located in the greater Houston area.The need for a consistent and stable reference frame to precisely interpret local ground deformation has become critically important since the 1990s,because of the significant spreading of subsidence.We have established a stable Houston reference frame,designated Houston16,using publicly available GPS observations(>5 years)from 15 Continuously Operating Reference Stations(CORS)located outside of the greater Houston area.Applications of the reference frame in subsidence and faulting studies are demonstrated in this article.Houston16 is aligned in origin and scale with the International GNSS Reference Frame of 2008(IGS08).A 7-parameter method was employed to transform the GPS-derived positional time series from IGS08 to Houston16.The primary product of this study is the seven parameters for transforming Earth-Centered-Earth-Fixed XYZ coordinates from IGS08 to Houston16.The frame stability of Houston16 is approximately 1 mm/year.Houston16 will be updated every few years to mitigate degradation of the frame’s stability with time and to synchronize with future updates of the IGS reference frame.展开更多
Ordovician carbonate buried-hill reservoir beds in the Hetianhe (和田河) gas field, located in the Mazhatage (玛扎塔塔) structural belt on the southern margin of the Bachu (巴楚) faulted uplift, southwestern Tar...Ordovician carbonate buried-hill reservoir beds in the Hetianhe (和田河) gas field, located in the Mazhatage (玛扎塔塔) structural belt on the southern margin of the Bachu (巴楚) faulted uplift, southwestern Tarim basin, were studied. Based on field survey, core and slice observation, the general characteristics of carbonate buried-hill reservoir beds and specifically Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were discussed. The karst zone of the reservoir beds in Hetianhe gas field was divided into superficial karst zone, vertical infiltration karst zone, lower subsurface flow karst zone, and deep sluggish flow zone from top to bottom. The effects of faulting on Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were obvious. The faulting intensified the karstification and increased the depth of denudation. Faulting and subsequent fracture growth modified the reservoir beds and improved the physical property and quality of the reservoir beds. Moreover, faulting enhanced the development of the dissolution holes and fractures and increased the thickness of the effective reservoir beds. Meanwhile, faulting made the high porosity-permeability carbonate belts, which created conditions for the hydrocarbon accumulation, develop near the fault zone.展开更多
New classification scheme about faulted rocks is proposed, according to the extent of grain reduction and growth and their sequence, and faulted rocks are classified as follows: (1) faulted rocks formed by the reducti...New classification scheme about faulted rocks is proposed, according to the extent of grain reduction and growth and their sequence, and faulted rocks are classified as follows: (1) faulted rocks formed by the reduction action mainly include breccia series, cataclasite series, tectonobutchite series, mylonite series; (2) faulted rocks formed by growth action is mainly tectonoschist (gneiss) series; (3) blastomylonite series formed by grain reduction first and then growth; (4) mylonitic schist (gneiss) series formed by crystal growth first and then grain reduction. All series can be further classified according to matrix contents.展开更多
Various earthquake fault types were analyzed for this study on the crust movement in the high region of the Tibetan plateau by analyzing mechanism solutions and stress fields. The results show that a lot of normal fau...Various earthquake fault types were analyzed for this study on the crust movement in the high region of the Tibetan plateau by analyzing mechanism solutions and stress fields. The results show that a lot of normal faulting type earthquakes are concentrated in the central High Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of normal faulting earthquakes are almost in an N-S direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extensions probably are an eastward extensional mo- tion, being mainly a tectonic active regime in the plateau altitudes. The tensional stress in the E-W or NWW-SEE direction predominates earthquake occurrences in the normal event region of the central plateau. The eastward extensional motion in the high Tibetan plateau is attributable to the gravitational collapse of the high plateau and the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. Extensional motions from the relaxation of the topography and/or gravitational collapse in the high plateau hardly occurred along the N-S direction. The obstruction for the plateau to move eastward is rather weak.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.52378411,52208404)China National Railway Group Limited Science and Technology Research and Development Program(Grant No.K2023G041).
文摘During strike-slip fault dislocation,multiple fault planes are commonly observed.The resulting permanent ground deformation can lead to profound structural damage to tunnels.However,existing analytical models do not consider multiple fault planes.Instead,they concentrate the entire fault displacement onto a single fault plane for analysis,thereby giving rise to notable errors in the calculated results.To address this issue,a refined nonlinear theoretical model was established to analyze the mechanical responses of the tunnels subjected to multiple strike-slip fault dislocations.The analytical model considers the number of fault planes,nonlinear soil‒tunnel interactions,geometric nonlinearity,and fault zone width,leading to a significant improvement in its range of applicability and calculation accuracy.The results of the analytical model are in agreement,both qualitatively and quantitatively,with the model test and numerical results.Then,based on the proposed theoretical model,a sensitivity analysis of parameters was conducted,focusing on the variables such as the number of fault planes,fault plane distance(d),fault displacement ratio(η),burial depth(C),crossing angle(β),tunnel diameter(D),fault zone width(Wf),and strike-slip fault displacement(Δfs).The results show that the peak shear force(Vmax),bending moment(Mmax),and axial force(Nmax)decrease with increasing d.The Vmax of the tunnel is found at the fault plane with the largest fault displacement.C,D,andΔfs contribute to the increases in Vmax,Mmax,and Nmax.Additionally,increasing the number of fault planes reduces Vmax and Mmax,whereas the variation in Nmax remains minimal.
文摘A solution for the lithospheric deformation of a uniform,elastically isotropic layer(EIL)of uniform thickness welded with a uniform,elastically orthotropic half-space(EOHS)due to a vertical tensile line fault(VTLF)with an opening in the horizontal direction located in the isotropic layer is derived in the integral form by employing Airy’s stress function approach for the plane strain case.The linear combination of exponential terms appearing in the denominator of the integral expressions of the deformation field of the EIL is expressed as a finite sum of exponential terms(FSET)by applying the method of least squares to analytically compute the deformation field.The displacement field is discussed in detail and computed numerically by considering the EOHS as olivine or barytes material or considering half-space to be isotropic.
文摘Drainage divide migration refers to the shifting boundaries between adjacent drainage basins over time,driven by processes such as tectonic uplift,differential erosion,stream capture,and lithological variations.This phenomenon has a significant impact on water flow patterns and basin extents,serving as an indicator of the landscape's response to active tectonic forces.One of the key drivers of divide migration is asymmetric uplift,which causes divides to shift from areas of lower uplift to regions experiencing higher uplift.Drainage divides are inherently dynamic,evolving over time as drainage networks develop and adjust to changing conditions.This study focuses on the migration of the main drainage divide along Karιncalιda?,located between Bozdo?an and Karacasu.It employs geomorphic analyses using metrics such as the normalized steepness index(ksn),Chi(χ),and Gilbert metrics.The main divide is categorized into four segments(D1–D4),with the Karacasu Fault,situated along the mountain's north-eastern boundary,identified as the primary factor influencing divide dynamics.Secondary factors include the relatively low elevation of Karιncalιda?,uniform lithology,and consistent rainfall patterns across the region.The results indicate that the main divide is currently stable,suggesting a balance between uplift and erosion.However,higherχvalues in the D4 segment suggest that future erosion may dominate,potentially causing the divide to migrate toward the Bozdo?an Basin.These findings highlight the dynamic nature of drainage divides and the complex interplay of tectonic,erosional,and lithological processes that shape their evolution.Continued monitoring and advanced geomorphic analysis are essential for understanding the long-term stability of the divide and its response to future tectonic activity and erosional modifications.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
基金the auspice of National Key Basic Project(973)(granted number 2008CB425702)National Science and Technology Project(granted Number SinoProbe-08)China Geological Survey project(granted number1212010670104)
文摘This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.
基金Chinese Joint Seismological Science Foundation (102002).
文摘Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.
基金This work was conducted at the Physical Modeling and Centrifuge Laboratory of the Soil Mechanics and Foundation Engineering Department in the School of Civil Engineering,University of Tehran
文摘Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated.
基金supported jointly by the China Geological Survey project(grant number:1212011120167,12120114002201)China National Natural Science Foundation(grant number 41472178)
文摘We present in this paper some new evidence for the change during the Quaternary in kinematics of faults cutting the eastern margin of the Tibetan Plateau. It shows that significant shortening deformation occurred during the Early Pleistocene, evidenced by eastward thrusting of Mesozoic carbonates on the Pliocene lacustrine deposits along the Minjiang upstream fault zone and by development of the transpressional ridges of basement rocks along the Anninghe river valley. The Middle Pleistocene seems to be a relaxant stage with local development of the intra-mountain basins particularly prominent along the Minjiang Upstream and along the southern segment of the Anninghe River Valley. This relaxation may have been duo to a local collapse of the thickened crust attained during the late Neogene to early Pleistocene across this marginal zone. Fault kinematics has been changed since the late Pleistocene, and was predominated by reverse sinistral strike-slip along the Minshan Uplift, reverse dextral strike-slip on the Longmenshan fault zone and pure sinistral strike-slip on the Anninghe fault. This change in fault kinematics during the Quaternary allows a better understanding of the mechanism by which the marginal ranges of the plateau has been built through episodic activities.
基金Project supported by the Earthquake Administration of Beijing Municipality and the National Development and Reform Commission of ChinaProject(IRT1125) supported by the program for Changjiang Scholars and Innovative Research Team in University, China
文摘Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.
基金supported by the Natural Science Foundation of China (No. 40674026)Commonweal Special Science Foundation of China (Grant No. 200811037)
文摘This paper analyzes various earthquake fault types, mechanism solutions, stress field as well as other geophysical data to study the crust movement in the Tibetan plateau and its tectonic implications. The results show that a lot of normal faulting type earthquakes concentrate in the central Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of the normal faulting earthquakes are almost in the N-S direction based on the analyses of the equal area projection diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extension is probably an eastward extensional motion, mainly a tectonic active regime in the altitudes of the plateau. The tensional stress in the E-W or WNW-ESE direction predominates the earthquake occurrence in the normal event region of the central plateau. A number of thrust fault and strike-slip fault type earthquakes with strong compressive stress nearly in the NNE-SSW direction occurred on the edges of the plateau. The eastward extensional motion in the Tibetan plateau is attributable to the eastward movement of materials in the upper mantle based on_seismo-tomographic results. The eastward extensional motion in the Tibetan plateau may be related to the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. The northward motion of the Tibetan plateau shortened in the N-S direction probably encounters strong obstructions at the western and northern margins. Extensional motions from the relaxation of the topography and/or gravitational collapse in the altitudes of the plateau occur hardly in the N-S direction. The obstruction for the plateau to move eastward is rather weak.
基金The National Natural Science Foundation of China(No.41572276)the National Key Research and Development Program of China(No.2017YFC0805400).
文摘For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.
基金supported by the Impact and Response of Antarctic Seas to Climate Change Project (IRASCC01-03-01)Hainan Naturtal Science Foundation Inovative Research Team Project (421CXTD441)the National Natural Science Foundation of China (Nos. 42176067, 41576069, 42176055, 41776189 and 41906197)
文摘The Neogene Terror Rift in the Antarctic Victoria Land Basin(VLB)of the Ross Sea,Antarctica,is composed of the Discovery Graben and the Lee Arch.Many Neogene volcanoes are aligned in the north-south direction in the southern VLB,belonging to the McMurdo Volcanic Group.However,due to multiple glaciations and limited seismic data,the volcanic processes are still unclear in the northern VLB,especially in the Terror Rift.Multichannel seismic profiles were collected at the VLB from the 32nd Chinese National Antarctic Research Expedition(CHINARE).We utilized four seismic profiles from the CHINARE and additional historical profiles,along with gravity and magnetic anomalies,to analyze faults and stratigraphic characteristics in the northern Terror Rift and volcanism in the VLB.Negative flower structures found in the northern Terror Rift suggest that the Terror Rift was affected by dextral strike-slip faults extending from the northern Victoria Land(NVL).After the initial orthogonal tension,the rift transited into an oblique extension,forming a set of downward concaving normal faults and accommodation zones in the Terror Rift.On the Lee Arch,several imbricated normal faults formed and converged into a detachment fault.Under gravitational forces,the strata bent upward and formed a rollover anticline.Many deep faults and thin strata subjected to erosion facilitated volcanic activity.A brittle volcanic region in the VLB was affected by dextral strike-slip movements and east-west extension,resulting in two Neogene volcanic chains that connect three igneous provinces in the VLB:the Hallett,Melbourne,and Erebus Provinces.These two chains contain mud volcanoes with magnetic nuclei,volcanic intrusions,and late-stage volcanic eruptions.Volcanisms have brought about opposite polarities of magnetic anomalies in Antarctica,indicating the occurrence of multiple volcanic activities.
基金Supported by the State Key Scientific and Technological Program (2011 ZX05009-002) the National Natural Science Foundation (41002049) the Central University Basic Research Fund (2009QD12)
文摘To unveil formation mechanism of key sequence boundaries of inland faulting basin and coal accumulation charac- teristics of coal seams in isochrohal stratigraphic framework, sequence stratigraphy, palaeogeographic recovery and other methods were used to research the sequence stratigraphy and coal accumulation in the example of Banding Basn in the west margin of Yangtze Platform, and the authors advanced a coal accumulation model of Faulting basin on the basis of accommo- dation space changes in the background of palaeogeography of sequence framework. The results show that: normal lacustrine regression and forced lacustrine regression are the main driving forces for the formation of sequence boundaries of Faulting ba- sin; basement subsidence is the main source of accommodation space of Faulting basin; and subsidence disequilibrium is the main cause for the difference in generation rate of accommodation space of Faulting basin. Coal accumulation in Faulting basin is obviously controlled by accommodation space changes in sequence framework and basin evolution. As Faulting basin evolves into depression basin, both subsidence rate of basin basement and generation rate of accommodation space decrease vertically, it appears as a progradational reverse-graded sedimentary sequence, coal accumulation in secondary sequence framework intensifies first and then weakens, and coal accumulation at the middle stage of highstand system tract is the best. During steady rifting period, minable coal seams were mostly developed in initial lacustrine flooding surface of fourth-order sequence and at the middle-late period of highstand system tract, and coal accumulation center lay in palaeogeographic unit of delta plain with moderate available accommodation space. During shrinking period, minable coal seams gradually migrated to the maximum lacustrine flooding surface and coal accumulation center lay in palaeographical unit of lacustrine with large available accommodation space.
基金supported by the National Natural Science Foundation of China(Gramt No.70171057 and No.49702024)a Key Project of the Ninth Five-Year Plan of the Chinese Academof Sciences(Grant No.KZ952-S1-402).
文摘Fault is a complex dynamic system controlled by the coupling of rock texture, reaction, fluid flow,stress, and rock deformation mechanism. A coupled reaction-transport- mechanical dynamic model for fault system is established and described in this paper. An example is presented for the Shuikoushan deposit, Hunan. The results of dynamic simulation indicate that the evolution and magnitude of fracture permeability of different rocks are different, and that faulting can enhance the spatial heterogeneity of rock permeability and facilitate fluid flow and mineralization in local fault zone. The pressure for a fault usually shows a variation mode of aperiodic oscillation with time, which reflects the chaotic behavior of the evolution of a fault.
文摘Jiali fault is one of the major faults in southeastern Tibetan plateau. From Naqu to Jiali along which the field investigation has been done, the fault roughly extends in N60W direction and consists of three segments arranged in en echelon. From Luoermano to Esukongma (about 40km) where the fault is the northern boundary of the Sangdi basin that extend north\|south, late Quaternary surface ruptures have been found. Within this segment the creeks and gullies that cross the fault were offset and the displacements range from several meters to about 5km. The average slip rate during late Quaternary is about 10mm/a for this segment. An interesting phenomena is that the large displacement can only be found at those places where the fault is related to the basins that extend north\|south. Outside the basins, no convincing evidence has been found for late Quaternary surface ruptures and average slip rate for the whole fault is only about 3mm/a middle Pleistocene. It seems that these strike\|slip faults behave like a transform fault and the strike\|slip motion along them were a consequence of east\|west extension that creates the north\|south graben systems rather than the vice versa.
文摘The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges with the Jinhe belt on the north, the Qianhe belt on the south and the Ninglang belt on the west. Within the Yanyuan thrust belt are sedimentary cover rocks of the Yangtze platform, with ages ranging from Sinian to Triassic. In the north, the thrust sheet is overlain by the Muli thrust sheet along the Jinhe belt, while in the south, it is underlain by the Kangdian paleoland along the Qianhe belt. The youngest rocks on the foot wall are late Eocene to Oligocene in age, indicating that the thrusting occurred in the late Tertiary. The top of the Yanyuan thrust belt is truncated by a flat erosion surface similar to that on the plateau to the north. Along a north\|dipping normal fault bordering the Yanyuan basin on the south, the erosion surface is tilted to the south against Triassic rocks. The basin is filled with coal\|bearing clastic sediments of Pliocene and early Pleistocene age, which gives the timing of the normal faulting. Based on the faulting pattern, we propose that the southeastern edge of the Tibetan plateau underwent a large amount of N\|S shortening and uplift along the Yanyuan thrust sheet in the late Tertiary, while the subsequent normal faulting that had occurred along the Yanyuan basin during the Pliocene and Pliocene can be interpreted to have accommodated gravitational collapse of the crust.
基金supported by the Harris-Galveston Subsidence District(HGSD)the National Science Foundation(NSF)through awards EAR-1242383,DUE-1243582,and OISE1460034
文摘Houston,Texas,is one of the earliest regions to employ continuous GPS technology for land subsidence monitoring.Currently,there are over 200 permanent GPS stations located in the greater Houston area.The need for a consistent and stable reference frame to precisely interpret local ground deformation has become critically important since the 1990s,because of the significant spreading of subsidence.We have established a stable Houston reference frame,designated Houston16,using publicly available GPS observations(>5 years)from 15 Continuously Operating Reference Stations(CORS)located outside of the greater Houston area.Applications of the reference frame in subsidence and faulting studies are demonstrated in this article.Houston16 is aligned in origin and scale with the International GNSS Reference Frame of 2008(IGS08).A 7-parameter method was employed to transform the GPS-derived positional time series from IGS08 to Houston16.The primary product of this study is the seven parameters for transforming Earth-Centered-Earth-Fixed XYZ coordinates from IGS08 to Houston16.The frame stability of Houston16 is approximately 1 mm/year.Houston16 will be updated every few years to mitigate degradation of the frame’s stability with time and to synchronize with future updates of the IGS reference frame.
基金supported by the National Basic Research Program of China (No. 2005CB422108)the National Natural Science Foundation of China (No. 40672092)
文摘Ordovician carbonate buried-hill reservoir beds in the Hetianhe (和田河) gas field, located in the Mazhatage (玛扎塔塔) structural belt on the southern margin of the Bachu (巴楚) faulted uplift, southwestern Tarim basin, were studied. Based on field survey, core and slice observation, the general characteristics of carbonate buried-hill reservoir beds and specifically Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were discussed. The karst zone of the reservoir beds in Hetianhe gas field was divided into superficial karst zone, vertical infiltration karst zone, lower subsurface flow karst zone, and deep sluggish flow zone from top to bottom. The effects of faulting on Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were obvious. The faulting intensified the karstification and increased the depth of denudation. Faulting and subsequent fracture growth modified the reservoir beds and improved the physical property and quality of the reservoir beds. Moreover, faulting enhanced the development of the dissolution holes and fractures and increased the thickness of the effective reservoir beds. Meanwhile, faulting made the high porosity-permeability carbonate belts, which created conditions for the hydrocarbon accumulation, develop near the fault zone.
文摘New classification scheme about faulted rocks is proposed, according to the extent of grain reduction and growth and their sequence, and faulted rocks are classified as follows: (1) faulted rocks formed by the reduction action mainly include breccia series, cataclasite series, tectonobutchite series, mylonite series; (2) faulted rocks formed by growth action is mainly tectonoschist (gneiss) series; (3) blastomylonite series formed by grain reduction first and then growth; (4) mylonitic schist (gneiss) series formed by crystal growth first and then grain reduction. All series can be further classified according to matrix contents.
基金supported financially by the National Natural Science Foundation of China (No. 40674026)
文摘Various earthquake fault types were analyzed for this study on the crust movement in the high region of the Tibetan plateau by analyzing mechanism solutions and stress fields. The results show that a lot of normal faulting type earthquakes are concentrated in the central High Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of normal faulting earthquakes are almost in an N-S direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extensions probably are an eastward extensional mo- tion, being mainly a tectonic active regime in the plateau altitudes. The tensional stress in the E-W or NWW-SEE direction predominates earthquake occurrences in the normal event region of the central plateau. The eastward extensional motion in the high Tibetan plateau is attributable to the gravitational collapse of the high plateau and the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. Extensional motions from the relaxation of the topography and/or gravitational collapse in the high plateau hardly occurred along the N-S direction. The obstruction for the plateau to move eastward is rather weak.