期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Running safety and seismic optimization of a fault-crossing simply-supported girder bridge for high-speed railways based on a train-track-bridge coupling system 被引量:10
1
作者 JIANG Hui ZENG Cong +3 位作者 PENG Qiang LI Xin MAXin-yi SONG Guang-song 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2449-2466,共18页
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup... Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively. 展开更多
关键词 high-speed train train-track-bridge interaction fault-crossing ground motion train operation safety speed limit track structure optimization
在线阅读 下载PDF
Vertical deformation of the fault-crossing network around Baotou,observed by GPS
2
作者 Qin Shanlan Du Weiji Ji Lingyun 《Geodesy and Geodynamics》 2013年第4期57-61,共5页
GPS data and precise leveling data of seismic network profiles across the fault in Baotou in 2006, 2009 and 2011 were processed and analyzed to test the feasibility of using GPS technology for fault-crossing vertical ... GPS data and precise leveling data of seismic network profiles across the fault in Baotou in 2006, 2009 and 2011 were processed and analyzed to test the feasibility of using GPS technology for fault-crossing vertical deformation monitoring. The results showed that high precision cross-fauh vertical deformation measurements can be obtained using appropriate GPS data processing strategies. 展开更多
关键词 fault-crossing precise leveling vertical deformation GPS vertical deviation mapping function
原文传递
Performance-based three-level fortification goal and its application in anti-dislocation countermeasures:A case study of Shantou Submarine tunnel 被引量:2
3
作者 Tianqiang Wang Ping Geng +2 位作者 Guoguo Liu Changjian Chen Wenqi Gu 《Underground Space》 SCIE EI CSCD 2023年第5期251-270,共20页
The dislocation momentum is the design basis for anti-dislocation to tunnel when a tunnel crosses an active fault.The influence of different dislocation levels on tunnel performances is not clear.Thus,based on seismic... The dislocation momentum is the design basis for anti-dislocation to tunnel when a tunnel crosses an active fault.The influence of different dislocation levels on tunnel performances is not clear.Thus,based on seismic activity parameters at the site of interest and probability of fault dislocation,probability fault displacement hazard analysis(PFDHA)methodology was introduced in this paper to ascertain the fault dislocation level under different exceeding probabilities(63%,10%,and 2%–3%).Then,based on the definition of different ground motion strength and fortification goals of the tunnel,a three-level fortification goal with different performance requirements of the tunnel was proposed.The first attempt to use the proposed indexes including the maximum dislocation of the tunnel and maximum relative deformation of the tunnel was tried to evaluate deformation and failure states with an experimental approach.Subsequently,the feasibility of the three-level fortification goal was further investigated according to the self-defined qualitative description and quantitative indexes in the segmental design and sectional expansion tunnels comprehensively.The results show that the fault dislocations relying on PFDHA at the site of the Shantou Submarine Tunnel are firstly ascertained as 0.04,1.8,and 2.4 m respectively.Taking the fault dislocation as model input values into account,the dislocation mechanism of the tunnel under the three levels was revealed.More importantly,judging from the dislocation performance requirements of the three-level fortification goal,the tunnel deformation and failure states are mitigated by adopting the countermeasures.The sectional expansion design can well meet the requirements without the restriction of a strong earthquake,while the effectiveness of the segmental tunnel can be proved under frequently occurred and fortification earthquake.The final research results are expected to provide a new fortification goal for anti-dislocation hazard evaluation on expansion design in high-intensity seismic regions and segmental design in slight and moderate-intensity seismic regions. 展开更多
关键词 fault-crossing tunnel PFDHA methodology Three-level fortification goal Failure modes Anti-dislocation countermeasures
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部