期刊文献+
共找到794篇文章
< 1 2 40 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
Application of Fuzzy Inference System in Gas Turbine Engine Fault Diagnosis Against Measurement Uncertainties 被引量:1
2
作者 Shuai Ma Yafeng Wu +1 位作者 Zheng Hua Linfeng Gou 《Chinese Journal of Mechanical Engineering》 2025年第1期62-83,共22页
Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf... Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties. 展开更多
关键词 Performance-based fault diagnosis Gas turbine engine Fuzzy inference system Measurement uncertainty Regression and classification
在线阅读 下载PDF
Full Ceramic Bearing Fault Diagnosis with Few-Shot Learning Using GPT-2
3
作者 David He Miao He Jay Yoon 《Computer Modeling in Engineering & Sciences》 2025年第5期1955-1969,共15页
Full ceramic bearings are mission-critical components in oil-free environments,such as food processing,semiconductor manufacturing,and medical applications.Developing effective fault diagnosis methods for these bearin... Full ceramic bearings are mission-critical components in oil-free environments,such as food processing,semiconductor manufacturing,and medical applications.Developing effective fault diagnosis methods for these bearings is essential to ensuring operational reliability and preventing costly failures.Traditional supervised deep learning approaches have demonstrated promise in fault detection,but their dependence on large labeled datasets poses significant challenges in industrial settings where fault-labeled data is scarce.This paper introduces a few-shot learning approach for full ceramic bearing fault diagnosis by leveraging the pre-trained GPT-2 model.Large language models(LLMs)like GPT-2,pre-trained on diverse textual data,exhibit remarkable transfer learning and few-shot learning capabilities,making them ideal for applications with limited labeled data.In this study,acoustic emission(AE)signals from bearings were processed using empirical mode decomposition(EMD),and the extracted AE features were converted into structured text for fine-tuning GPT-2 as a fault classifier.To enhance its performance,we incorporated a modified loss function and softmax activation with cosine similarity,ensuring better generalization in fault identification.Experimental evaluations on a laboratory-collected full ceramic bearing dataset demonstrated that the proposed approach achieved high diagnostic accuracy with as few as five labeled samples,outperforming conventional methods such as k-nearest neighbor(KNN),large memory storage and retrieval(LAMSTAR)neural network,deep neural network(DNN),recurrent neural network(RNN),long short-term memory(LSTM)network,and model-agnostic meta-learning(MAML).The results highlight LLMs’potential to revolutionize fault diagnosis,enabling faster deployment,reduced reliance on extensive labeled datasets,and improved adaptability in industrial monitoring systems. 展开更多
关键词 LLMs GPT-2 few-shot learning fault diagnosis full ceramic bearing acoustic emission
在线阅读 下载PDF
SmdaNet: A hierarchical hard sample mining and domain adaptation neural network for fault diagnosis in industrial process
4
作者 Zhenhua Yu Zongyu Yao +2 位作者 Weijun Wang Qingchao Jiang Zhixing Cao 《Chinese Journal of Chemical Engineering》 2025年第8期146-157,共12页
Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in ... Fault diagnosis in industrial process is essential for ensuring production safety and efficiency.However,existing methods exhibit limited capability in recognizing hard samples and struggle to maintain consistency in feature distributions across domains,resulting in suboptimal performance and robustness.Therefore,this paper proposes a fault diagnosis neural network for hard sample mining and domain adaptive(SmdaNet).First,the method uses deep belief networks(DBN)to build a diagnostic model.Hard samples are mined based on the loss values,dividing the data set into hard and easy samples.Second,elastic weight consolidation(EWC)is used to train the model on hard samples,effectively preventing information forgetting.Finally,the feature space domain adaptation is introduced to optimize the feature space by minimizing the Kullback–Leibler divergence of the feature distributions.Experimental results show that the proposed SmdaNet method outperforms existing approaches in terms of classification accuracy,robustness and interpretability on the penicillin simulation and Tennessee Eastman process datasets. 展开更多
关键词 Industrial process BIOPROCESS fault diagnosis Neural networks FERMENTATION
在线阅读 下载PDF
A Deep Learning Approach for Fault Diagnosis in Centrifugal Pumps through Wavelet Coherent Analysis and S-Transform Scalograms with CNN-KAN
5
作者 Muhammad Farooq Siddique Saif Ullah Jong-Myon Kim 《Computers, Materials & Continua》 2025年第8期3577-3603,共27页
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ... Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability. 展开更多
关键词 fault diagnosis centrifugal pump wavelet coherent analysis stockwell transform convolutional neural network Kolmogorov-Arnold network
在线阅读 下载PDF
Image encoding-based bearing fault diagnosis:Review and challenges for high-speed trains
6
作者 Huimin Li Lingfeng Li +1 位作者 Bin Liu Ge Xin 《High-Speed Railway》 2025年第3期251-259,共9页
High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal im... High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance. 展开更多
关键词 High-speed trains Image encoding fault diagnosis Rotating machinery Condition monitoring
在线阅读 下载PDF
Rolling Bearing Fault Diagnosis Method Based on FFT-VMD Multiscale Information Fusion and SE-TCN Model
7
作者 Chaozhi Cai Yuqi Ren +1 位作者 Yingfang Xue Jianhua Ren 《Structural Durability & Health Monitoring》 2025年第3期665-682,共18页
Rolling bearings are important parts of industrial equipment,and their fault diagnosis is crucial to maintaining these equipment’s regular operations.With the goal of improving the fault diagnosis accuracy of rolling... Rolling bearings are important parts of industrial equipment,and their fault diagnosis is crucial to maintaining these equipment’s regular operations.With the goal of improving the fault diagnosis accuracy of rolling bearings under complex working conditions and noise,this study proposes a multiscale information fusion method for fault diagnosis of rolling bearings based on fast Fourier transform(FFT)and variational mode decomposition(VMD),as well as the Senet(SE)-TCNnet(TCN)model.FFT is used to transform the original one-dimensional time domain vibration signal into a frequency domain signal,while VMD is used to decompose the original signal into several inherent mode functions(IMFs)of different scales.The center frequency method also determines the number of mode decompositions.Then,the data obtained by the two methods are fused into data containing the bearing fault information of different scales.Finally,the fused data are sent to the SE-TCN model for training.Experimental tests are conducted to verify the performance of this method.The findings reveal that an average accuracy of 98.39%can be achieved when noise is added and can even reach 100%when the signal-to-noise ratio is 6 dB.When the load changes,the accuracy of the model can reach 97.45%.The proposed method has the characteristics of high accuracy and strong generalization ability in bearing fault diagnosis.Furthermore,it can effectively overcome the effects of noise and variable working conditions in actual industrial environments,thus providing some ideas for future practical applications of bearing fault diagnosis. 展开更多
关键词 fault diagnosis rolling bearing vibrational mode decomposition fast Fourier transform SE-TCN
在线阅读 下载PDF
Multi-source information fusion based fault diagnosis for complex electromechanical equipment considering replacement parts
8
作者 Xinzhi YAO Zhichao FENG +3 位作者 Xiangyu KONG Zhijie ZHOU Hui LIU Guanyu HU 《Chinese Journal of Aeronautics》 2025年第6期99-111,共13页
The research on fault diagnosis based on multi-source information fusion technology aims to comprehensively integrate the diagnostic information of complex mechanical and electrical equipment,providing a scientific an... The research on fault diagnosis based on multi-source information fusion technology aims to comprehensively integrate the diagnostic information of complex mechanical and electrical equipment,providing a scientific and precise decision-making basis for decision-makers.However,in diagnostic practice,issues such as the impact of component replacement,rule combination explosion,and information redundancy have become research difficulties.To address these challenges,this paper innovatively combines equipment mechanisms with expert knowledge to build an optimized model that considers the impact of component replacement based on the traditional Belief Rule Base(BRB-h).Meanwhile,under the framework of traditional independent component analysis,this paper proposes an Independent Component Analysis(ICA)method that considers Expert knowledge(ICA-E).Furthermore,to quantify the impact of component replacement on equipment performance,this paper delves into the transparency and traceability of replacement impact factors and conducts a sensitivity analysis.Through empirical case studies,the advancement and practicability of this new method in the field of fault diagnosis are verified. 展开更多
关键词 fault diagnosis Multi-sourceinformation fusion Belief rule base Independent components analysis Expert system
原文传递
An Interpretable Few-Shot Framework for Fault Diagnosis of Train Transmission Systems with Noisy Labels
9
作者 Haiquan Qiu Biao Wang +4 位作者 Yong Qin Ao Ding Zhixin He Jing Liu Xin Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期65-75,共11页
Intelligent fault diagnosis technology plays an indispensable role in ensuring the safety,stability,and efficiency of railway operations.However,existing studies have the following limitations.1)They are typical black-... Intelligent fault diagnosis technology plays an indispensable role in ensuring the safety,stability,and efficiency of railway operations.However,existing studies have the following limitations.1)They are typical black-box models that lacks interpretability as well as they fuse features by simply stacking them,overlooking the discrepancies in the importance of different features,which reduces the credibility and diagnosis accuracy of the models.2)They ignore the effects of potentially mistaken labels in the training datasets disrupting the ability of the models to learn the true data distribution,which degrades the generalization performance of intelligent diagnosis models,especially when the training samples are limited.To address the above items,an interpretable few-shot framework for fault diagnosis with noisy labels is proposed for train transmission systems.In the proposed framework,a feature extractor is constructed by stacked frequency band focus modules,which can capture signal features in different frequency bands and further adaptively concentrate on the features corresponding to the potential fault characteristic frequency.Then,according to prototypical network,a novel metric-based classifier is developed that is tolerant to mislabeled support samples in the case of limited samples.Besides,a new loss function is designed to decrease the impact of label mistakes in query datasets.Finally,fault simulation experiments of subway train transmission systems are designed and conducted,and the effectiveness as well as superiority of the proposed method are proved by ablation experiments and comparison with the existing methods. 展开更多
关键词 few-shot learning intelligent fault diagnosis INTERPRETABILITY noisy labels train transmission systems
在线阅读 下载PDF
Improved Spectral Amplitude Modulation Based on Sparse Feature Adaptive Convolution for Variable Speed Fault Diagnosis of Bearing
10
作者 Jiawei Lin Changkun Han +3 位作者 Wei Lu Liuyang Song Peng Chen Huaqing Wang 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期31-43,共13页
Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplit... Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplitude modulation(ISAM)based on sparse feature adaptive convolution(SFAC)is proposed to enhance the fault features under variable speed conditions.First,an optimal bi-damped wavelet construction method is proposed to learn signal impulse features,which selects the optimal bi-damped wavelet parameters with correlation criterion and particle swarm optimization.Second,a convolutional basis pursuit denoising model based on an optimal bi-damped wavelet is proposed for resolving sparse impulses.A model regularization parameter selection method based on weighted fault characteristic amplitude ratio assistance is proposed.Then,an ISAM method based on kurtosis threshold is proposed to further enhance the fault information of sparse signal.Finally,the type of variable speed faults is determined by order spectrum analysis.Various experimental results,such as spectral amplitude modulation and Morlet wavelet matching,verify the effectiveness and advantages of the ISAM-SFAC method. 展开更多
关键词 bearing fault diagnosis feature enhancement sparse representation spectral amplitude modulation variable speed
在线阅读 下载PDF
Physically-consistent-WGAN based small sample fault diagnosis for industrial processes
11
作者 Siyu Tang Hongbo Shi +2 位作者 Bing Song Yang Tao Shuai Tan 《Chinese Journal of Chemical Engineering》 2025年第2期163-174,共12页
In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversa... In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods. 展开更多
关键词 Chemical processes fault diagnosis Physical consistency Generative adversarial networks Small sample data
在线阅读 下载PDF
AMulti-Sensor and PCSV Asymptotic Classification Method for Additive Manufacturing High Precision and Efficient Fault Diagnosis
12
作者 Lingfeng Wang Dongbiao Li +2 位作者 Fei Xing Qiang Wang Jianjun Shi 《Structural Durability & Health Monitoring》 2025年第5期1183-1201,共19页
With the intelligent upgrading of manufacturing equipment,achieving high-precision and efficient fault diagnosis is essential to enhance equipment stability and increase productivity.Online monitoring and fault diagno... With the intelligent upgrading of manufacturing equipment,achieving high-precision and efficient fault diagnosis is essential to enhance equipment stability and increase productivity.Online monitoring and fault diagnosis technology play a critical role in improving the stability of metal additive manufacturing equipment.However,the limited proportion of fault data during operation challenges the accuracy and efficiency of multi-classification models due to excessive redundant data.A multi-sensor and principal component analysis(PCA)and support vector machine(SVM)asymptotic classification(PCSV)for additive manufacturing fault diagnosis method is proposed,and it divides the fault diagnosis into two steps.In the first step,real-time data are evaluated using the T2 and Q statistical parameters of the PCAmodel to identify potential faults while filtering non-fault data,thereby reducing redundancy and enhancing real-time efficiency.In the second step,the identified fault data are input into the SVM model for precise multi-class classification of fault categories.The PCSV method advances the field by significantly improving diagnostic accuracy and efficiency,achieving an accuracy of 99%,a diagnosis time of 0.65 s,and a training time of 503 s.The experimental results demonstrate the sophistication of the PCSV method for high-precision and high-efficiency fault diagnosis of small fault samples. 展开更多
关键词 Additive manufacturing fault diagnosis MULTI-SENSOR PCSV
在线阅读 下载PDF
Rolling Bearing Fault Diagnosis Based on Cross-Attention Fusion WDCNN and BILSTM
13
作者 Yingyong Zou Xingkui Zhang +3 位作者 Tao Liu Yu Zhang Long Li Wenzhuo Zhao 《Computers, Materials & Continua》 2025年第6期4699-4723,共25页
High-speed train engine rolling bearings play a crucial role in maintaining engine health and minimizing operational losses during train operation.To solve the problems of low accuracy of the diagnostic model and unst... High-speed train engine rolling bearings play a crucial role in maintaining engine health and minimizing operational losses during train operation.To solve the problems of low accuracy of the diagnostic model and unstable model due to the influence of noise during fault detection,a rolling bearing fault diagnosis model based on cross-attention fusion of WDCNN and BILSTM is proposed.The first layer of the wide convolutional kernel deep convolutional neural network(WDCNN)is used to extract the local features of the signal and suppress the highfrequency noise.A Bidirectional Long Short-Term Memory Network(BILSTM)is used to obtain global time series features of the signal.Cross-attention combines the WDCNN layer and the BILSTM layer so that the model can recognize more comprehensive feature information of the signal.Meanwhile,to improve the accuracy,Variable Modal Decomposition(VMD)is used to decompose the signals and filter and reconstruct the signals using envelope entropy and kurtosis,which enables the pre-processing of the signals so that the data input to the neural network contains richer feature information.The feasibility of the model is tested and experimentally validated using publicly available datasets.The experimental results show that the accuracy of themodel proposed in this paper is significantly improved compared to the traditional WDCNN,BILSTM,and WDCNN-BILSTM models. 展开更多
关键词 High-speed train engine rolling bearings fault diagnosis variational modal decomposition WDCNNBILSTM-cross-attention feature fusion
在线阅读 下载PDF
A Causal-Transformer Based Meta-Learning Method for Few-Shot Fault Diagnosis in CNC Machine Tool Bearings
14
作者 Youlong Lyu Ying Chu +2 位作者 Qingpeng Qiu Jie Zhang Jutao Guo 《Computers, Materials & Continua》 2025年第11期3393-3418,共26页
In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic op... In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic operating conditions increase the risk of fatigue damage in CNC machine tool bearings,highlighting the urgent demand for rapid and accurate fault diagnosis methods that can maintain production efficiency and extend equipment uptime.However,varying conditions induce feature distribution shifts,and scarce fault samples limitmodel generalization.Therefore,this paper proposes a causal-Transformer-based meta-learning(CTML)method for bearing fault diagnosis in CNC machine tools,comprising three core modules:(1)the original bearing signal is transformed into a multi-scale time-frequency feature space using continuous wavelet transform;(2)a causal-Transformer architecture is designed to achieve feature extraction and fault classification based on the physical causal law of fault propagation;(3)the above mechanisms are integrated into a model-agnostic meta-learning(MAML)framework to achieve rapid cross-condition adaptation through an adaptive gradient pruning strategy.Experimental results using the multiple bearing dataset show that under few-shot cross-condition scenarios(3-way 1-shot and 3-way 5-shot),the proposed CTML outperforms benchmark models(e.g.,Transformer,domain adversarial neural networks(DANN),and MAML)in terms of classification accuracy and sensitivity to operating conditions,while maintaining a moderate level of model complexity. 展开更多
关键词 fault diagnosis META-LEARNING CNC machine tools AEROSPACE
在线阅读 下载PDF
A digital-twin-based open circuit fault diagnosis method for permanent magnet motor drive system
15
作者 Leiting Zhao Zheng Ruan +2 位作者 Kan Liu Liran Li Yuchao Zou 《Railway Sciences》 2025年第4期494-521,共28页
Purpose–This study aims to implement condition monitoring for urban rail train permanent magnet synchronous motors and inverter systems.Through the construction of a digital twin model,it performs fault diagnosis of ... Purpose–This study aims to implement condition monitoring for urban rail train permanent magnet synchronous motors and inverter systems.Through the construction of a digital twin model,it performs fault diagnosis of potential system failures,enabling rapid fault localization and protection.Design/methodology/approach–This research begins with a brief introduction to the structure and classification of permanent magnet synchronous motors(PMSMs),followed by a detailed analysis of their mathematical model.Subsequently,it thoroughly investigates the working principle of three-phase two-level inverters and the distribution of space voltage vectors.Based on the analysis of the main circuit topology,a digital twin model matching the external characteristics of the physical circuit is established using the model predictive control method,achieving accurate system simulation.Furthermore,through theoretical analysis and simulation verification of phase current characteristics under inverter switch tube faults,general patterns of phase currents under fault conditions are summarized.The established digital twin model is then employed to validate these patterns,confirming the model’s effectiveness in fault diagnosis.Findings–This study proposes a fault diagnosis method based on digital twins.Experimental and simulation results demonstrate that the established digital twin model can accurately simulate the external characteristics of the actual physical circuit,validating its effectiveness in inverter fault diagnosis.This approach offers practical value for condition monitoring in actual urban rail train systems.Originality/value–The study innovatively starts from a mathematical model and simulates the actual physical model through a virtual model,requiring only external characteristics to achieve system fault diagnosis,thereby enhancing diagnostic efficiency. 展开更多
关键词 Urban rail train Digital twin fault diagnosis IGBT
在线阅读 下载PDF
A monitoring system to improve fault diagnosis in telescope arrays
16
作者 Yang Xu Guangwei Li +6 位作者 Jing Wang Liping Xin Hongbo Cai Xuhui Han Xiaomeng Lu Lei Huang Jianyan Wei 《Astronomical Techniques and Instruments》 2025年第4期246-254,共9页
The Ground-based Wide-Angle Cameras array necessitates the integration of more than 100 hardware devices,100 servers,and 2500 software modules that must be synchronized within a 3-second imaging cycle.However,the comp... The Ground-based Wide-Angle Cameras array necessitates the integration of more than 100 hardware devices,100 servers,and 2500 software modules that must be synchronized within a 3-second imaging cycle.However,the complexity of real-time,high-concurrency processing of large datasets has historically resulted in substantial failure rates,with an observation efficiency estimated at less than 50%in 2023.To mitigate these challenges,we developed a monitoring system designed to improve fault diagnosis efficiency.It includes two innovative monitoring views for“state evolution”and“transient lifecycle”.Combining these with“instantaneous state”and“key parameter”monitoring views,the system represents a comprehensive monitoring strategy.Here we detail the system architecture,data collection methods,and design philosophy of the monitoring views.During one year of fault diagnosis experimental practice,the proposed system demonstrated its ability to identify and localize faults within minutes,achieving fault localization nearly ten times faster than traditional methods.Additionally,the system design exhibited high generalizability,with possible applicability to other telescope array systems. 展开更多
关键词 Automated telescopes Astronomical image processing fault diagnosis Monitoring system
在线阅读 下载PDF
Inlet Fault Diagnosis Based on Attention Mechanism Feature Fusion
17
作者 ZHANG Xiaole XIAO Lingfei +1 位作者 LIU Jinchao HAN Zirui 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期368-384,共17页
To tackle the instability fault diagnosis challenges in wide-speed-range supersonic inlets,this study proposes an inlet fault decision fusion diagnosis algorithm based on attention mechanism feature fusion,achieving e... To tackle the instability fault diagnosis challenges in wide-speed-range supersonic inlets,this study proposes an inlet fault decision fusion diagnosis algorithm based on attention mechanism feature fusion,achieving efficient diagnosis of instability faults across wide-speed regimes.First,considering the requirement for wall pressure data extraction in mathematical modeling of wide-speed-range inlets,a supersonic inlet reference model is established for computational fluid dynamics(CFD)simulations.Second,leveraging data-driven modeling techniques and support vector machine(SVM)algorithms,a high-precision mathematical model covering wide-speed domains and incorporating instability mechanisms is rapidly developed using CFD-derived inlet wall pressure data.Subsequently,an inlet fault decision fusion diagnosis method is proposed.Pressure features are fused via attention mechanisms,followed by Dempster-Shafer(D-S)evidence theory-based decision fusion,which integrates advantages of multiple intelligent algorithms to overcome the limitations of single-signal diagnosis methods(low accuracy and constrained optimization potential).The simulation results demonstrate the effectiveness of the data-driven wide-speed-range inlet model in achieving high precision and rapid convergence.In addition,the fusion diagnosis algorithm has been shown to attain over 95%accuracy in the detection of instability,indicating an improvement of more than 5%compared to the accuracy of other single fault diagnosis algorithms.This enhancement effectively eliminates the occurrence of missed or false diagnoses,while demonstrates robust performance under operational uncertainties. 展开更多
关键词 wide-speed-range supersonic inlet data-driven modeling attention mechanism Dempster-Shafer(D-S)evidence theory fault diagnosis
在线阅读 下载PDF
Fault diagnosis of three-phase inverter based on GAF-CNN
18
作者 DONG Weiguang LU Haobo LI Shengchang 《Journal of Measurement Science and Instrumentation》 2025年第3期456-463,共8页
To apply the advantages of deep learning in recognizing two-dimensional(2D)images to three-phase inverter fault diagnosis,a threephase inverter fault diagnosis model based on gramian angular field(GAF)combined with co... To apply the advantages of deep learning in recognizing two-dimensional(2D)images to three-phase inverter fault diagnosis,a threephase inverter fault diagnosis model based on gramian angular field(GAF)combined with convolutional neural network(CNN)was proposed.Since the current signals of the inverter in different working states are different,the images formed by the time series encoding are also different,which enables the image recognition technology to be used for time series classification to identify the fault current signal of the inverter.Firstly,the one-dimensional(1D)inverter fault current signal was converted into a 2D image through the GAF.Next,the CNN model suitable for inverter fault diagnosis was input to realize the detection,classification and location of inverter fault.The simulation results show that the recognition accuracy of this method is 99.36%under different noisy data.Compared with other traditional methods,it has higher accuracy and reliability,and stronger anti-noise interference capability and robustness in dealing with noisy data.Therefore,it is an effective fault diagnosis method for inverters. 展开更多
关键词 fault diagnosis gramian angular field(GAF) convolutional neural network(CNN) anti-noise interference ROBUSTNESS
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
19
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
Rolling Bearing Fault Diagnosis Based on MTF Encoding and CBAM-LCNN Mechanism
20
作者 Wei Liu Sen Liu +2 位作者 Yinchao He Jiaojiao Wang Yu Gu 《Computers, Materials & Continua》 2025年第3期4863-4880,共18页
To address the issues of slow diagnostic speed,low accuracy,and poor generalization performance in traditional rolling bearing fault diagnosis methods,we propose a rolling bearing fault diagnosis method based on Marko... To address the issues of slow diagnostic speed,low accuracy,and poor generalization performance in traditional rolling bearing fault diagnosis methods,we propose a rolling bearing fault diagnosis method based on Markov Transition Field(MTF)image encoding combined with a lightweight convolutional neural network that integrates a Convolutional Block Attention Module(CBAM-LCNN).Specifically,we first use the Markov Transition Field to convert the original one-dimensional vibration signals of rolling bearings into two-dimensional images.Then,we construct a lightweight convolutional neural network incorporating the convolutional attention module(CBAM-LCNN).Finally,the two-dimensional images obtained from MTF mapping are fed into the CBAM-LCNN network for image feature extraction and fault diagnosis.We validate the effectiveness of the proposed method on the bearing fault datasets from Guangdong University of Petrochemical Technology’s multi-stage centrifugal fan and Case Western Reserve University.Experimental results show that,compared to other advanced baseline methods,the proposed rolling bearing fault diagnosis method offers faster diagnostic speed and higher diagnostic accuracy.In addition,we conducted experiments on the Xi’an Jiaotong University rolling bearing dataset,achieving excellent results in bearing fault diagnosis.These results validate the strong generalization performance of the proposed method.The method presented in this paper not only effectively diagnoses faults in rolling bearings but also serves as a reference for fault diagnosis in other equipment. 展开更多
关键词 Rolling bearing fault diagnosis markov transition field lightweight convolutional neural network convolutional block attention module
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部